Homework Set 6, Due Thursday, Feb. 24, 2005

(Late papers will be accepted until 4 PM on Fri. Feb. 25)

1. Strang p. 180 #1, 2, 14

2. Strang p. 180 #4, 5

3. Strang p. 181 #10, 11, 17

4. Strang p. 182 #21, 22

5. Strang p. 191 #6

6. Strang p. 192 #10

7. A linear map \(R : V \to V \) acting on a vector space \(V \) is called a reflection if \(R^2 = I \).

 a) Show that the matrix \(R = \begin{pmatrix} -1 & 2 \\ 0 & 1 \end{pmatrix} \) is a reflection. Draw a sketch of \(\mathbb{R}^2 \) showing the vectors \((1,2), (-1,0), (0,3)\) and their images under \(R \). Also indicate both the subspace \(U \) of vectors that are map to themselves: \(Ru = u \), and the subspace \(W \) of vectors that are mapped to their opposites: \(Rw = -w \). [From your sketch it is clear that this \(R \) is not an orthogonal reflection which is when the subspaces \(U \) and \(W \) are orthogonal.]

 b) Show that the subspaces \(U \) and \(W \) are orthogonal (so this is an orthogonal projection) if and only if \(R = R^* \).

8. [Relation between projections and reflections]. Let \(P \) be a projection into a sub-space \(U \) and let \(W \) be the nullspace of \(P \). Clearly, every vector \(X \) and be written as

\[X = PX + (I-P)X, \]

that is, \(X = X_1 + X_2 \),

where \(X_1 = PX \) and \(X_2 = (I-P)X \).

a) Show that \(X_1 \) is in \(U \), that \(X_2 \) is in \(W \), and that \(P^2X = PX \) for every vector \(X \).

b) Let \(R \) be the related reflection across \(U \), so if \(X \) is in \(U \), then \(RX = X \), while if \(X \) is in \(W \), then \(RX = -X \). Show that every vector \(X \) can be written as

\[X = X_3 + X_4, \]
where \(X_3 \in U \) and \(X_4 \in W \). [SUGGESTION: Observe that if we have \(X_3 \) and \(X_4 \), then you can write \(RX \) in terms of \(X_3 \) and \(X_4 \). Use this to solve for \(X_3 \) and \(X_4 \) in terms of \(X \) and \(RX \).]

c) Show that \(R \) and \(P \) are related by the simple formula \(R = 2P - I \). This makes obvious the relation between parts (a) and (b) above.

Problems on Least Squares

9. Strang, p. 215 #1, 4

10. Strang, p. 217 #17, 18

11. Strang, p. 229-230 #11, 18, 24

12. Find a plane of the form \(z = ax + by + c \) that best fits the following five points:
\[
(0,0,1.1), (1,1,2), (0,1,-0.1), (1,0,3), (0,-1,2.1).
\]

13. a) Some experimental data \((x_i, y_i)\) is believed to fit a curve of the form
\[
y = \frac{1 + x}{a + bx^2}
\]

where the parameters \(a \) and \(b \) are to be determined from the data. The method of least squares does not apply directly to this since the parameters \(a \) and \(b \) do not appear linearly. Show how to find an equivalent equation to which the method of least squares does apply.

b) Repeat part a) for the logistic curve \(y = \frac{L}{1 + e^{a - bx}} \). Here the constant \(L \) is assumed to be known. [If \(b > 0 \), then \(y \) converges to \(L \) as \(x \) increases. Thus the value of \(L \) can often be estimated simply by eye-ball ing a plot of the data for large \(x \).]

14. The comet Tentax, discovered only in 1968, moves within the solar system. The following are observations of its position \((r, \theta)\) in a polar coordinate system with center at the sun (here \(\theta \) is an angle measured in degrees, \(r \) in million km):

| \(r \) | 2.70 | 2.00 | 1.61 | 1.20 | 1.02 |
| \(\theta \) | 48 | 67 | 83 | 108 | 126 |
By Kepler’s first law the comet should move in a plane orbit whose shape is either an ellipse or hyperbola (this assumes the gravitational influence of the planets is neglected). Thus the polar coordinates \((r, \theta)\) satisfy

\[
r = \frac{p}{1 - e \cos \theta}
\]

where \(p\) and \(e\) are parameters describing the orbit. Use the data to estimate \(p\) and \(e\) by the method of least squares. [HINT: Make some (simple) preliminary manipulation so the parameters \(p\) and \(e\) appear linearly so one can then apply the method of least squares.]

Bonus Problem Given a unit vector \(\mathbf{n} = ai + bj + ck\) in \(\mathbb{R}^3\), find an explicit formula for a \(3 \times 3\) matrix \(M\) that rotates a vector \(\mathbf{v} = xi + yj + zk\) in \(\mathbb{R}^3\), about the “\(n\) axis” through a specified angle \(\theta\). Thus, your matrix \(M\) will involve \(a\), \(b\), \(c\), and \(\theta\).

[Last revised: February 18, 2005]