Some of these problems use the same matrices as Homework Set 8. That should save you some time.

1. Let \(u(t) = (u_1(t), u_2(t)) \). Solve the differential equation \(\frac{du}{dt} = Au \) with \(u(0) = (1, 2) \) where for \(A \) you use the following matrices:
 a). \(\begin{pmatrix} 3 & 1 \\ 1 & 3 \end{pmatrix} \)
 b). \(\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \)
 c). \(\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \)
 d). \(\begin{pmatrix} 3 & 0 \\ 3 & 3 \end{pmatrix} \).

2. Find the general solution of \(\frac{du}{dt} = Au \), where
 \[A = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 1 & 4 & -2 \end{pmatrix} \].

3. [Strang, p. 299 #10]. Get \(G_k \) be a sequence of numbers with the property
 \[G_{k+2} = \frac{1}{2}(G_{k+1} + G_k), \quad \text{with} \quad G_0 = a \quad \text{and} \quad G_1 = b. \]
 a) Find an explicit formula for \(G_k \) by diagonalizing an appropriate matrix.
 b) Compute \(\lim_{k \to \infty} G_k \) in terms of \(a \) and \(b \). [You may find it useful to try the special case where \(G_0 = 1 \) and \(G_1 = 3 \).

4. [Strang, p. 301 #27]. Say \(A = SAS^{-1} \), where \(\Lambda \) is a diagonal matrix, and \(B \) is the block matrix \(B = \begin{pmatrix} A & 0 \\ 0 & 2A \end{pmatrix} \). Diagonalize \(B \).

5. In Homework 7 we worked with \(\Delta_n = \det M_n \) be the determinant of an \(n \times n \) matrix \(M_n \) with \(a \)'s along the main diagonal and \(b \)'s on the two “off diagonals” directly above and below the main diagonal (this is a simple example of a tridiagonal matrix). Thus
 \[M_5 = \begin{pmatrix} a & b & 0 & 0 & 0 \\ b & a & b & 0 & 0 \\ 0 & b & a & b & 0 \\ 0 & 0 & b & a & b \\ 0 & 0 & 0 & b & a \end{pmatrix}. \]
 You showed that \(\Delta_n = a\Delta_{n-1} - b^2\Delta_{n-2} \).
 The task now is to find an explicit formula for \(\Delta_n \).
6. Let A be a real 2×2 matrix with the property that $A^3 = I$.
 a) If λ is an eigenvalue of A, show that $\lambda^3 = 1$.
 b) What are all possible values of the trace and determinant of A?
 c) Use this to all possible real matrices A satisfying $A^3 = I$.

7. If $A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$ and $B = I + A$, compute A^2, A^3, e^A, and B^2, B^3, e^B.

8. Let B be a real antisymmetric matrix. Show that $M := e^B$ is an orthogonal matrix.

9. Let M be a diagonalizable real $n \times n$ matrix with (possible complex) eigenvalues λ_1, $\lambda_2, \ldots, \lambda_n$. If the real parts of these eigenvalues are all negative, show that $e^{Mt} \to 0$ as $t \to \infty$.

10. Let A be a real square matrix. If λ is a real eigenvalue of A with corresponding eigenvector V, and $\mu \neq \lambda$ is a real eigenvalue of A^T with corresponding eigenvector W, show that V and W are orthogonal: $\langle V, W \rangle = 0$.