Newton's method for finding square roots

Let $A>0$ be a positive real number. We want to show that there is a real number x with $x^{2}=A$. We already know that for many real numbers, such as $A=2$, there is no rational number x with this property. Formally, let $f(x):=x^{2}-A$. We want to solve the equation $f(x)=0$.
Newton gave a useful general recipe for solving equations of the form $f(x)=0$. Applied to compute square roots, so $f(x):=x^{2}-A$, it (see below) gives

$$
\begin{equation*}
x_{k+1}=\frac{1}{2}\left(x_{k}+\frac{A}{x_{k}}\right) . \tag{1}
\end{equation*}
$$

Clearly, if the initial approximation is positive, $x_{1}>0$ (we'll assume this) then all of the x_{k} are positive. To get some sense of these approximations, in the special case where $A=3$ and the initial approximation is $x_{1}=1$ I used a calculator and found (to 20 decimal accuracy)

$$
\begin{gathered}
x_{2}=2.0, \quad x_{3}=1.75 \quad x_{4}=1.7321428571428571428 \\
x_{5}=1.7320508100147275405 \quad x_{6}=1.7320508075688772952
\end{gathered}
$$

while the exact number is $\sqrt{3}=1.7320508075688772935$, so x_{6} above is already very close. Beginning with x_{2} the successive approximations seem to be decreasing. To investigate this we compute $x_{n+1}-x_{n}$. From (1), by simple algebra we find that

$$
\begin{equation*}
x_{k+1}-x_{k}=\frac{A-x_{k}^{2}}{2 x_{k}} . \tag{2}
\end{equation*}
$$

Thus, there are two cases: Case 1 is $x_{k}^{2}>A$. Here $x_{k+1}<x_{k}$. Case 2 is $x_{k}^{2}<A$. Here $x_{k+1}>x_{k}$.
If we are in Case 1 for x_{k}, are we also in Case 1 for x_{k+1} ? We compute:

$$
\begin{equation*}
x_{k+1}^{2}-A=\left(\frac{x_{k}^{2}+A}{2 x_{k}}\right)^{2}-A=\frac{\left(x_{k}^{2}-A\right)^{2}}{4 x_{k}^{2}} . \tag{3}
\end{equation*}
$$

Since the right hand side is always positive (lucky!), we see that beginning with $k=2$ we are always in Case 1, no matter if we start in Case 1 or Case 2. Consequently beginning with x_{2} the sequence is monotone decreasing. Because it is bounded below, the x_{k} converge to some limit $L>0$. From (2) since the left side converges to zero it is clear that $A-L^{2}=0$ so $L=\sqrt{A}$.
The inequality (3) also yields a valuable estimate of the rate of convergence. This is easiest to appreciate if we look at the case where $A \geq 1$ Because $x_{k}^{2}>A>1$ (for $k \geq 2$) we have

$$
\begin{equation*}
x_{k+1}^{2}-A \leq \frac{\left(x_{k}^{2}-A\right)^{2}}{4 A^{2}} \leq\left(x_{k}^{2}-A\right)^{2} \tag{4}
\end{equation*}
$$

Thus at each step, the error, $x_{k+1}^{2}-A$, is less than the square of the error in the previous step. For instance, if $x_{k}^{2}-A<10^{-5}$, then $x_{k+1}^{2}-A<10^{-10}$, an increase of doubling the number of decimal point accuracy. Now that we know \sqrt{A} exists, it is easy to veryfy the related error estimate

$$
\begin{equation*}
x_{k+1}-\sqrt{A}=\frac{1}{2 x_{k}}\left(x_{k}-\sqrt{A}\right)^{2} . \tag{5}
\end{equation*}
$$

This confirms that the rapid convergence of the numerical experiment we did at the beginning was not a coincidence.

Newton's Method is a useful general recipe for solving equations of the form $f(x)=$ 0 . Say we have some approximation x_{k} to a solution. He showed how to get a better approximation x_{k+1}. It works most of the time if your approximation is close enough to the solution. Here's the procedure. Go to the point $\left(x_{k}, f\left(x_{k}\right)\right)$ and find the tangent line. Its equation is

$$
y=f\left(x_{k}\right)+f^{\prime}\left(x_{k}\right)\left(x-x_{k}\right) .
$$

The next approximation, x_{k+1}, is where this tangent line crosses the x axis. Thus,

$$
0=f\left(x_{k}\right)+f^{\prime}\left(x_{k}\right)\left(x_{k+1}-x_{k}\right), \quad \text { that is, } \quad x_{k+1}=x_{k}-\frac{f\left(x_{k}\right)}{f^{\prime}\left(x_{k}\right)} .
$$

Applied to compute square roots, so $f(x):=x^{2}-A$, this gives

$$
x_{k+1}=\frac{1}{2}\left(x_{k}+\frac{A}{x_{k}}\right)
$$

which is what we used in (1).
[Last revised: September 4, 2018]

