DIRECTIONS This exam has three parts, Part A, short answer, has 1 problem (12 points). Part B has 5 shorter problems (7 points each, so 35 points). Part C has 3 traditional problems (15 points each so 45 points). Total is 92 points.
Closed book, no calculators or computers– but you may use one 3” × 5” card with notes on both sides.

Part A: Short Answer (1 problems, 12 points).

1. Let S and T be linear spaces and $A : S \rightarrow T$ be a linear map. Say V and W are particular solutions of the equations $AV = Y_1$ and $AW = Y_2$, respectively, while $Z \neq 0$ is a solution of the homogeneous equation $AZ = 0$.

Answer the following in terms of V, W, and Z.

a) Find some solution of $AX = 3Y_1$.

b) Find some solution of $AX = -5Y_2$.

c) Find some solution of $AX = 3Y_1 - 5Y_2$.

d) Find another solution (other than Z and 0) of the homogeneous equation $AX = 0$.

e) Find two solutions of $AX = Y_1$.

f) Find another solution of $AX = 3Y_1 - 5Y_2$.

Part B: Short Problems (5 problems, 7 points each so 35 points)

B–1. $U = (1, 1, 0, 1)$ and $V = (-1, 2, 1, -1)$ are orthogonal vectors in R^4.

Write the vector $X = (1, 1, 1, 2)$ in the form $X = aU + bV + W$, where a, b are scalars and W is a vector perpendicular to U and V.

B–2. Find $u(x,t)$ that satisfies $u_x - 2u_t = 1$ with $u(x,0) = 0$.

B–3. Let $u(x,t)$ be a solution of the wave equation

$$u_{tt} = 4u_{xx}, \quad \text{for} \quad -\infty < x < \infty, \ t \geq 0,$$

with the (continuous) initial conditions

$$u(x,0) = f(x), \quad u_t(x,0) = g(x).$$

Find the largest interval $J = \{a \leq x \leq b\}$ where changing $f(x)$ or $g(x)$ at any point of J can change (“influence”) the value of $u(0,3)$. In other words, in the (x,t) plane, find all the points on the x-axis that are in the domain of dependence of $(0, 3)$.
B–4. Find the general solution \(u(x, y) \) of \(u_{xy} = 4y \).

B–5. Let \(u(x, y) \) and \(v(x, y) \) be solutions of the Laplace equation \(\Delta u = 0, \Delta v = 0 \) in a bounded region \(\Omega \) in the plane. If \(u > v \) on the boundary of \(\Omega \), what, if anything, can you conclude about the relationship between \(u \) and \(v \) inside \(\Omega \)? Justify your assertion.

Part C: Traditional Problems (3 problems, 15 points each so 45 points)

C–1. Find the motion \(u(x, t) \) of a clamped string \(\{0 \leq x \leq \pi\} \)

\[
 u_{tt} = u_{xx},
\]

with initial and boundary conditions:

\[
 u(x, 0) = 0, \quad u_t(x, 0) = 15 \sin 5x, \quad \text{and} \quad u(0, t) = u(\pi, t) = 0.
\]

C–2. Let \(u(x, y) \) satisfy \(\Delta u - u = 0 \) in a bounded region \(\Omega \subset \mathbb{R}^2 \) with \(u(x, y) = 0 \) on the boundary of \(\Omega \). Use Green’s identity to show that \(u(x, y) = 0 \) throughout \(\Omega \).

C–3. Let \(u(x, t) \) be the temperature of a rod of length \(L \) that satisfies

\[
 u_t = u_{xx} - ru \quad \text{for} \quad 0 < x < L, \quad t > 0,
\]

where \(r > 0 \) is a constant [this is related to the heat equation but assumes that heat radiates out into the air along the rod]. Assume \(u \) satisfies the initial condition \(u(x, 0) = f(x) \).

Define the total heat energy by \(E(t) = \frac{1}{2} \int_0^L u^2(x, t) \, dx \).

a) If \(u \) also satisfies the Dirichlet boundary conditions

\[
 u(0, t) = 0, \quad u(L, t) = 0
\]

(the ends of the rod are held at temperature 0), show that \(E(t) \) is a decreasing function of \(t \).

b) Show that even if \(u \) satisfies Neumann boundary conditions

\[
 u_x(0, t) = 0, \quad u_x(L, t) = 0
\]

(the ends of the rod are insulated), \(E(t) \) is still a decreasing function of \(t \).

c) [Extra credit!] Show that in either of the above cases \(\lim_{t \to \infty} E(t) = 0 \).