Problem Set 1

Due: In class Thursday, Jan. 27. Late papers will be accepted until 1:00 PM Friday.

1. Find Green’s function \(g(x,s) \) to get a formula \(u(x) = \int_0^x g(x,s)f(s)\,ds \) for a particular solution of \(u''(x) = f(x) \).

2. In class we considered the oscillations of a weight attached to a spring hanging from the ceiling. If \(u(t) \) is the displacement of the mass \(m \) we were let to solve \(mu''(t) = -ku \), where \(k > 0 \) is a constant that depends on the stiffness of the spring. But this model neglected gravity. If we include gravity the equation becomes
 \[mu'' = -ku + mg, \]
 where \(g \) is the gravitational constant,
 Solve this equation assuming you know the initial conditions \(u(0) = A \) and \(u'(0) = B \).

3. Let \(a(x) \) and \(f(x) \) be periodic functions with period \(P \), so, for instance, \(a(x + P) = a(x) \). This problem investigates periodic solutions \(u(x) \) (with period \(P \)) of \(Lu := u'(x) + a(x)u = f(x) \).
 a) Show there is a periodic solution of \(u'(x) = f(x) \) if and only if \(\int_0^P f(x)\,dx = 0 \).
 b) Show that the homogeneous equation \(Lu = 0 \) has a non-trivial \(P \)-periodic solution \(u(x) \) if and only if \(\int_0^P a(x)\,dx = 0 \).
 c) If \(\int_0^P a(x)\,dx \neq 0 \), show that the inhomogeneous equation \(Lu = f \) always has a unique \(P \)-periodic solution \(u(x) \).
 On the other hand, if \(\int_0^P a(x)\,dx = 0 \), find a necessary and sufficient condition for \(Lu = f \) to have a \(P \)-periodic solution. If it has a \(P \) periodic solution, is this solution unique?

4. In class we obtained a simpler general formula for a particular solution of the inhomogeneous first order system \(U' + AU = F \), where \(U(x) \) and \(F(x) \) are vectors with \(n \) components and \(A(x) \) is an \(n \times n \) matrix. In addition we showed how much of the theory for a second order equation was in fact a special case of that for a first order system.
 Use this to re-derive Lagrange’s formula for a particular solution of the inhomogeneous equation \(u'' + u = f \).

5. Show that the boundary value problem \(u'' + u = f \) on \(0 \leq x \leq \pi \) with boundary conditions \(u(0) = 0 \) and \(u(\pi) = 0 \) has a solution if and only if \(\int_0^\pi f(x)\sin x\,dx = 0 \).

Bonus Problems (Due Jan. 27)

1-B Let \(a(t) \) and \(f(t) \) be periodic continuous functions with period \(2\pi \).
a) Show that the equation \(u'' = f \) has a \(2\pi \)-periodic solution (so both \(u \) and \(u' \) are \(2\pi \)-periodic) if and only if
\[
\int_0^{2\pi} f(t) \, dt = 0.
\]

b) Show that the equation \(u'' + u = f \) has a \(2\pi \)-periodic solution if and only if both
\[
\int_0^{2\pi} f(t) \sin t \, dt = 0 \quad \text{and} \quad \int_0^{2\pi} f(t) \cos t \, dt = 0.
\]

c) More generally, show that the equation \(Lu := u'' + a(t)u = f \) has a \(2\pi \)-periodic solution if and only if
\[
\int_0^{2\pi} f(t)z(t) \, dt = 0
\]
for all \(2\pi \)-periodic solutions of \(z'' + a(t)z = 0 \). [REMARK: These are special cases of the Fredholm alternative: the image of \(L \) is the orthogonal complement of the kernel of the adjoint operator \(L^* \).]

[Last revised: January 25, 2011]