1. In \(\mathbb{R}^4 \) the vectors

\[
U_1 := (1, 1, 1, 1), \quad U_2 := (1, 1, -1, -1), \quad U_3 := (2, -2, 2, 2), \quad U_4 := (1, -1, -1, 1)
\]

are orthogonal, as you can easily verify.

a) Use these to find an orthonormal basis \(e_k := \alpha_k U_k, \quad k = 1, \ldots, 4 \).

b) Write the vector \(v := (0, -2, 2, 5) \) using this basis: \(v = a_1 e_1 + a_2 e_2 + a_3 e_3 + a_4 e_4 \).

c) Find the projection, \(P_v \), of \(v \) into the plane spanned by \(U_2 \) and \(U_3 \).

d) Compute \(\|P_v\| \).

2. Let \(X \) be a linear space with an inner product (not necessarily \(\mathbb{R}^n \)) and let \(P : X \rightarrow X \) be an orthogonal projection, so \(P^2 = P \) and \(P = P^\ast \). Write \(V \) for the image of \(P \); it is the space into which vectors are projected. Given \(x \in X \), write \(x = v + w \), where \(v = Px \) is the projection of \(x \) into \(V \). Show that \(w \) is orthogonal to \(V \).

3. Let \(f(x) \) be a \(2\pi \) periodic function. Use Fourier series to investigate finding \(2\pi \) periodic solutions of

\[
-u''(x) + u = f(x),
\]

so we want \(u \) and all of its derivatives to be \(2\pi \) periodic.

This is routine – and short. Expand \(f \) in a Fourier series, so \(f(x) = \sum_{k=-\infty}^{\infty} a_k e^{ikx} \) and seek the solution as a Fourier series \(u(x) = \sum_{k=-\infty}^{\infty} c_k e^{ikx} \). So all you need do is determine the \(c_k \)'s in terms of the \(a_k \)'s.

4. Consider the wave equation \(u_{tt} = u_{xx} \), \(0 \leq x \leq \pi \) with the boundary conditions

\[
u(0, t) = 0, \quad u(\pi, t) = 0, \quad (t \geq 0).
\]

a) Find all solutions of the special form \(u(x, t) = \phi(x)T(t) \) (standing wave solutions).

b) Use this to solve the wave equation with the above boundary conditions and the initial conditions

\[
u(x, 0) = 2 \sin(3x) - 7 \sin(19x), \quad u_t(x, 0) = 0.
\]
5. Consider the wave equation \(u_{tt} = u_{xx}, \) \(0 \leq x \leq \pi \) with the mixed boundary conditions

\[
 u(0,t) = 0, \quad \frac{\partial u}{\partial x}(\pi,t) = 0, \quad (t \geq 0).
\]

a) Find all solutions of the special form
\(u(x,t) = \phi(x)T(t) \) (standing wave solutions).

b) Use this to solve the wave equation with the above boundary conditions and the initial conditions
\(u(x,0) = 4 \sin(\frac{5x}{2}) - 7 \sin(\frac{9x}{2}), \quad u_t(x,0) = 0. \)

6. Lorentz Transformations Let \(u(x,t) \) be a given function. Find all linear changes of variable
\[
 \tau = \alpha x + \beta t, \quad z = \gamma x + \delta t
\]
that keep the wave operator invariant, that is
\[
 u_{tt} - c^2 u_{xx} = u_{\tau\tau} - c^2 u_{zz}.
\]

Suggestion: You will be led to three equations for the four coefficients. Try to find a cleaner way to write these in terms of some other parameter. Here is a related example. Say \(a, b, c, \) and \(d \) satisfy
\[
 a^2 + b^2 = 1, \quad c^2 + d^2 = 1, \quad ac + bd = 0. \tag{1}
\]
In this example, try writing \(a = \cos \theta \). Then \(b = \pm \sin \theta \) etc and you’ll get equations for the four coefficients in terms of the one parameter \(\theta \) (with some choices for \(\pm \) a few places?). Upshot, the equations (1) just describe a rotation (and possibly also a reflection) around the origin in the plane \(\mathbb{R}^2 \).

7. Integration by Parts for Multiple Integrals Let \(u(x,y) \) be a scalar function and \(\mathbf{F}(x,y) \) a vector field in a bounded region \(D \) in \(\mathbb{R}^2 \) and let the closed curve \(C \) be the boundary of \(D \) with \(\mathbf{N} \) be the unit outer normal vector field on this boundary.

a) Prove the identity \(\nabla \cdot (u\mathbf{F}) = \nabla u \cdot \mathbf{F} + u\nabla \cdot \mathbf{F} \). Compare this with the special case of a function of one variable.

b) Use the divergence theorem to obtain the following generalization of integration by parts for multiple integrals:
\[
\iint_D u\nabla \cdot \mathbf{F} \, dA = \oint_C u\mathbf{F} \cdot \mathbf{N} \, ds - \iint_D \nabla u \cdot \mathbf{F} \, dA.
\]
Notice that for a function of one variable with \(D \) being the interval \(\{a < x < b\} \), this reduces precisely to the usual formula for integration by parts.

c) Generalize this formula to the case where \(D \) is a bounded (solid) region in three dimensional space.
d) One frequently uses this with \(F = \nabla v \). Show the above formula for integration by parts becomes (say in two dimensions)

\[
\iint_D u \Delta v \, dA = \oint_C u \nabla v \cdot \mathbf{N} \, ds - \iint_D \nabla u \cdot \nabla v \, dA.
\]

To what does this reduce for functions on one variable?

e) As a short application using this, say \(u(x,y) \) is a harmonic function in a bounded region \(D \), so \(\nabla \cdot \nabla u = 0 \). One can think of \(u(x,y) \) as being the equilibrium temperature of \(D \). Let \(C \) is the boundary of \(D \). If \(u = 0 \) on \(C \), it is plausible that one must have \(u(x,y) = 0 \) throughout \(D \). Show how this follows from the above formula. What is the analogous assertion for functions of one variable, where a harmonic function is just a solution of \(u'' = 0 \)?
Bonus Problem

1-B [Fourier Series in Several Variables]. Fourier series extends immediately to functions of several variables. Let T^2 be the square $\{(x,y) \in \mathbb{R}^2 \mid -\pi \leq x \leq \pi, -\pi \leq y \leq \pi\}$ and consider functions $f(x,y)$ that are 2π periodic in both variables with the $L_2(T^2)$ inner product

$$\langle f, g \rangle := \iint_{T^2} f(x,y)\overline{g(x,y)} \, dx \, dy.$$

a) Show that the functions

$$\varphi_{jk} := e^{i(jx+ky)} \quad j, k = 0, \pm 1, \pm 2, \ldots$$

are orthogonal. How should you modify these to get orthonormal functions?

b) If $f(x,y)$ is 2π periodic in both variables, use Fourier series to investigate finding periodic solutions $u(x,y)$ of

$$-\Delta u(x,y) + u = f(x,y).$$

[This is almost identical to Problem 3 above.]

c) If $f(x,y)$ is 2π periodic in both variables, use Fourier series to investigate finding periodic solutions of

$$-\Delta u(x,y) = f(x,y).$$

[Last revised: February 23, 2011]