Many Coupled Oscillators

A Vibrating String

Say we have \(n \) particles with the same mass \(m \) equally spaced on a string having tension \(\tau \). Let \(y_k \) denote the vertical displacement if the \(k^{th} \) mass. Assume the ends of the string are fixed; this is the same as having additional particles at the ends, but with zero displacement: \(y_0 = 0 \) and \(y_{n+1} = 0 \). Let \(\phi_k \) be the angle the segment of the string between the \(k^{th} \) and \(k+1^{st} \) particle makes with the horizontal. Then Newton’s second law of motion applied to the \(k^{th} \) mass asserts that

\[
my_k'' = \tau \sin \phi_k - \tau \sin \phi_{k-1}, \quad k = 1, \ldots, n. \tag{1}
\]

If the particles have horizontal separation \(h \), then \(\tan \phi_k = (y_{k+1} - y_k)/h \). For the case of small vibrations we assume that \(\phi_k \approx 0 \); then \(\sin \phi_k \approx \tan \phi_k = (y_{k+1} - y_k)/h \) so we can rewrite (1) as

\[
y_k'' = p^2(y_{k+1} - 2y_k + y_{k-1}), \quad k = 1, \ldots, n, \tag{2}
\]

where \(p^2 = \tau/mh \). This is a system of second order linear constant coefficient differential equations with the boundary conditions \(y_0(t) = 0 \) and \(y_{n+1}(t) = 0 \). As usual, one seeks special solutions of the form \(y_k(t) = v_k e^{\alpha t} \). Substituting this into (2) we find

\[
\alpha^2 v_k = p^2(v_{k+1} - 2v_k + v_{k-1}), \quad k = 1, \ldots, n,
\]

that is, \(\alpha^2 \) is an eigenvalue of the matrix \(p^2(T - 2I) \), where

\[
T = \begin{pmatrix}
0 & 1 & 0 & 0 & \ldots & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & \ldots & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & \ldots & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \ldots & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & \ldots & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & \ldots & 0 & 1 & 0
\end{pmatrix}. \tag{3}
\]

From the work in the next section (see (9)), we conclude that

\[
\alpha_k^2 = -2p^2(1 - \cos \frac{k\pi}{n+1}) = -4p^2 \sin^2 \frac{k\pi}{2(n+1)}, \quad k = 1, \ldots, n,
\]

so

\[
\alpha_k = 2ip \sin \frac{k\pi}{2(n+1)}, \quad k = 1, \ldots, n.
\]

The corresponding eigenvectors \(V_k \) are the same as for \(T \) (see (10)). Thus the special solutions are

\[
Y_k(t) = V_k e^{2ipt \sin \frac{k\pi}{2(n+1)}}, \quad k = 1, \ldots, n,
\]

where \(Y(t) = (y_1(t), \ldots, y_n(t)) \).
A Special Tridiagonal Matrix

We investigate the simple \(n \times n \) real tridiagonal matrix:

\[
M = \begin{pmatrix}
\alpha & \beta & 0 & \cdots & 0 & 0 & 0 \\
\beta & \alpha & \beta & 0 & \cdots & 0 & 0 \\
0 & \beta & \alpha & \beta & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & \beta & \alpha & \beta \\
0 & 0 & 0 & \cdots & 0 & \beta & \alpha \\
\end{pmatrix} = \alpha I + \beta T,
\]

where \(T \) is defined by (3). This matrix arises in many applications, such as \(n \) coupled harmonic oscillators (see the previous section) and solving the Laplace equation numerically. Clearly \(M \) and \(T \) have the same eigenvectors and their respective eigenvalues are related by \(\mu = \alpha + \beta \lambda \). Thus, to understand \(M \) it is sufficient to work with the simpler matrix \(T \).

Eigenvalues and Eigenvectors of \(T \)

Usually one first finds the eigenvalues and then the eigenvectors of a matrix. For \(T \), it is a bit simpler first to find the eigenvectors. Let \(\lambda \) be an eigenvalue (necessarily real) and \(V = (v_1, v_2, \ldots, v_n) \) be a corresponding eigenvector. It will be convenient to write \(\lambda = 2c \).

Then

\[
0 = (T - \lambda I)V = \begin{pmatrix}
-2c & 1 & 0 & 0 & \cdots & 0 & 0 & 0 \\
1 & -2c & 1 & 0 & \cdots & 0 & 0 & 0 \\
0 & 1 & -2c & 1 & \cdots & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \cdots & -2c & 1 & 0 \\
0 & 0 & 0 & 0 & \cdots & 1 & -2c & 1 \\
0 & 0 & 0 & 0 & \cdots & 0 & 1 & -2c \\
\end{pmatrix} \begin{pmatrix}
v_1 \\
v_2 \\
v_3 \\
\vdots \\
v_{n-2} \\
v_{n-1} \\
v_n \\
\end{pmatrix} = \begin{pmatrix}
v_1 - 2cv + v_2 \\
v_2 - 2cv + v_3 \\
\vdots \\
v_{k-1} - 2cv_k + v_{k+1} \\
\vdots \\
v_{n-2} - 2cv_{n-1} + v_n \\
v_{n-1} - 2cv_n \\
\end{pmatrix}
\]

(4)

Except for the first and last equation, these have the form

\[
v_{k-1} - 2cv_k + v_{k+1} = 0.
\]

(5)
We can also bring the first and last equations into this same form by introducing new artificial variables \(v_0 \) and \(v_{n+1} \), setting their values as zero: \(v_0 = 0 \), \(v_{n+1} = 0 \).

The result (5) is a second order linear difference equation with constant coefficients along with the boundary conditions \(v_0 = 0 \), and \(v_{n+1} = 0 \). As usual for such equations one seeks a solution with the form \(v_k = r^k \). Equation (5) then gives \(1 - 2cr + r^2 = 0 \) whose roots are

\[r_\pm = c \pm \sqrt{c^2 - 1} \]

Note also \(2c = r + r^{-1} \) and \(r_+ r_- = 1 \). (6)

Case 1: \(c \neq \pm 1 \). In this case the two roots \(r_\pm \) are distinct. Let \(r := r_+ = c + \sqrt{c^2 - 1} \). Since \(r_- = c - \sqrt{c^2 - 1} = 1/r \), we deduce that the general solution of (4) is

\[v_k = Ar^k + Br^{-k}, \quad k = 2, \ldots, n-1 \] (7)

for some constants \(A \) and \(B \) which.

The first boundary condition, \(v_0 = 0 \), gives \(A + B = 0 \), so

\[v_k = A(r^k - r^{-k}), \quad k = 1, \ldots, n-1. \] (8)

Since for a non-trivial solution we need \(A \neq 0 \), the second boundary condition, \(v_{n+1} = 0 \), implies

\[r^{n+1} - r^{-(n+1)} = 0, \quad \text{so} \quad r^{2(n+1)} = 1. \]

In particular, \(|r| = 1 \). Using (6), this gives \(2|c| \leq |r| + |r|^{-1} = 2 \). Thus \(|c| \leq 1 \). In fact, \(|c| < 1 \) because we are assuming that \(c \neq \pm 1 \).

Case 2: \(c = \pm 1 \). Then \(r = c \) and the general solution of (4) is now

\[v_k = (A + Bk)c^k. \]

The boundary condition \(v_0 = 0 \) implies that \(A = 0 \). The other boundary condition then gives \(0 = v_{n+1} = B(n+1)c^{n+1} \). This is satisfied only in the trivial case \(B = 0 \). Consequently the equations (4) have no non-trivial solution for \(c = \pm 1 \).

It remains to rewrite our results in a simpler way. We are in Case 1 so \(|r| = 1 \). Thus \(r = e^{i\theta} \), \(c = \cos \theta \), and \(1 = r^{2(n+1)} = e^{2i(n+1)\theta} \). Consequently \(2(n+1)\theta = 2k\pi \) for some \(1 \leq k \leq n \) (we exclude \(k = 0 \) and \(k = n+1 \) because we know that \(c \neq \pm 1 \), so \(r \neq \pm 1 \)).

Normalizing the eigenvectors \(V \) by the choice \(A = 1/2i \), we summarize as follows:
Theorem 1 The $n \times n$ matrix T has the eigenvalues
\[\lambda_k = 2c = 2\cos \theta = 2\cos \frac{k\pi}{n+1}, \quad 1 \leq k \leq n \] (9)
and corresponding eigenvectors
\[V_k = (\sin \frac{k\pi}{n+1}, \sin \frac{2k\pi}{n+1}, \ldots, \sin \frac{n \pi}{n+1}). \] (10)

Remark 1. If $n = 2k+1$ is odd, then the middle eigenvalue is zero because $(k+1)\pi/(n+1) = (k+1)\pi/2(k+1) = \pi/2$.

Remark 2. Since $2ab = a^2 + b^2 - (a-b)^2 \leq a^2 + b^2$ with equality only if $a = b$, we see that for any $x \in \mathbb{R}^n$
\[\langle x, Tx \rangle = 2(x_1x_2 + x_2x_3 + \cdots + x_{n-1}x_n) \leq x_1^2 + 2(x_2^2 + \cdots + x_{n-1}^2) + x_n^2 \leq 2\|x\|^2 \]
with equality only if $x = 0$. Similarly $\langle x, Tx \rangle \geq -2\|x\|^2$. Thus, the eigenvalues of T are in the interval $-2 < \lambda < 2$. Although we obtained more precise information above, it is useful to observe that we could have deduced this so easily.

Remark 3. Gershgorin’s circle theorem is also a simple way to get information about the eigenvalues of a square (complex) matrix $A = (a_{ij})$. Let D_i be the disk whose center is at a_{ii} and radius is $R_i = \sum_{j \neq i} |a_{ij}|$, so
\[|\lambda - a_{jj}| \leq R_j. \]
These are the Gershgorin disks.

Theorem 2 (Gershgorin) Each eigenvalues of A lies in at least one of these Gershgorin discs.

Proof: Say $Ax = \lambda x$ and say $|x_i| = \max_j |x_j|$. The i^{th} component of $Ax = \lambda x$ is
\[(\lambda - a_{ii})x_i = \sum_{j \neq i} a_{ij}x_j \]
so
\[|(\lambda - a_{ii})x_i| \leq \sum_{j \neq i} |a_{ij}||x_j| \leq R_i|x_i|. \]
That is, $|\lambda - a_{ii}| \leq R_i$, as claimed.

By Gershgorin’s theorem, we observed immediately that all of the eigenvalues of T satisfy $|\lambda| \leq 2$.

DETERMINANT OF $T - \lambda I$

We use recursion on n, the size of the $n \times n$ matrix T. It will be convenient to build on (4) and let $D_n = \det(T - \lambda I)$. As before, let $\lambda = 2c$. Then, expanding by minors using the first column of (4) we obtain the formula

$$D_n = -2cD_{n-1} - D_{n-2} \quad n = 3, 4, \ldots .$$

(11)

Since $D_1 = -2c$ and $D_2 = 4c^2 - 1$, we can use (11) to define $D_0 := 1$. The relation (11) is, except for the sign of c, is identical to (5). The solution for $c \neq \pm 1$ is thus

$$D_k = A s^k + B s^{-k}, \quad k = 0, 1, \ldots ,$$

(12)

where

$$-2c = s + s^{-1} \quad \text{and} \quad s = -c + \sqrt{c^2 - 1}.$$

(13)

This time we determine the constants A, B from the initial conditions $D_0 = 1$ and $D_1 = -2c$. The result is

$$D_k = \begin{cases}
\frac{1}{2\sqrt{c^2 - 1}} (s^{k+1} - s^{-(k+1)}) & \text{if } c \neq \pm 1, \\
(-c)^k (k + 1) & \text{if } c = \pm 1.
\end{cases}$$

(14)

For many purposes it is useful to rewrite this.

Case 1: $|c| < 1$. Then $s = -c + i\sqrt{1 - c^2}$ has $|s| = 1$ so $s = e^{i\alpha}$ and $c = -\cos \alpha$ for some $0 < \alpha < \pi$. Therefore from (14),

$$D_k = \frac{\sin(k + 1)\alpha}{\sin \alpha}.$$

(15)

Case 2: $c > 1$. Write $c = \cosh \beta$ for some $\beta > 0$. Since $-e^\beta - e^{-\beta} = -2c = s + s^{-1}$, write $s = -e^\beta$. Then from (14),

$$D_k = (-1)^k \frac{\sinh(k + 1)\beta}{\sinh \beta},$$

(16)

where we chose the sign in $\sqrt{c^2 - 1} = -\sinh \beta$ so that $D_0 = 1$.

Case 3: $c < -1$. Write $c = -\cosh \beta$ for some $\beta > 0$. Since $e^t + e^{-t} = -2c = s + s^{-1}$, write $s = e^\beta$. Then from (14),

$$D_k = \frac{\sinh(k + 1)\beta}{\sinh \beta},$$

(17)

where we chose the sign in $\sqrt{c^2 - 1} = +\sinh t$ so that $D_0 = 1$.

Note that as $t \to 0$ in (15)–(17), that is, as $c \to \pm 1$. these formulas agree with the case $c = \pm 1$ in (14).