
Math 425 Final Exam Jerry L. Kazdan
May 7, 2015 9:00 – 11:00

Directions This exam has two parts. Part A has 5 shorter problems (8 points each, so
40 points), while Part B has 5 traditional problems (15 points each, so total is 75 points).
Maximum score is thus 40 + 75 = 115 points.

Closed book, no calculators or computers – but you may use one sheet of 8.5′′ × 11′′ paper
with notes on ONE side.

Please remember to silence your cellphone before the exam and keep it out of sight for the
duration of the test period. This exam begins promptly at 9:00 and ends at 11:00; anyone
who continues working after time is called may be denied the right to submit his or her
exam or may be subject to other grading penalties. Please indicate what work you wish to
be graded and what is scratch. Clarity and neatness count.

Part A 5 shorter problems, 8 points each.

A–1. Find a function u(x, t) that satisfies ut − u = 7x with u(x, 0) = 0.

Solution: A particular solution of the inhomogeneous equation is up = −7x. The
general solution of the homogeneous equation is u0 = k(x)et for any function k(x).
Thus the general solution of the inhomogeneous equation is

u(x, t) = k(x)et − 7x.

To satisfy the initial condition we need

0 = u(x, 0) = k(x)− 7x

so k(x) = 7x and u(x, t) = 7xet − 7x.

A–2. Let Ω ⊂ R
2 be a bounded region with boundary ∂Ω.

Say u(x, y, t) is a solution of ut −∆u− 2u = et sin(x+ 2y) in Ω with

u(x, y, t) = 0 on ∂Ω and u(x, y, 0) = 0;

and v(x, y, t) is a solution of vt −∆v − 2v = 0 in Ω with

v(x, y, t) = x2y on ∂Ω and w(x, y, 0) = cos(2x).

Find a function w(x, y, t) that satisfies wt = ∆w + 2w + 3et sin(x+ 2y) in Ω with

w(x, y, t) = 5x2y on ∂Ω and w(x, y, 0) = 5 cos(2x).

[Your solution should give a simple formula for w in terms of u and v].

Solution: By linearity, w(x, y, t) = 3u(x, y, t) + 5v(x, y, t).
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A–3. Say u(x, t) is a solution of the wave equation utt = 9uxx for all −∞ < x < ∞, with
u(x, 0) = f(x) and ut(x, 0) = g(x).

In the (x, t)-plane, find all the points on the x-axis that can influence the solution at
x = 2, t = 4.

Solution: The d’Alembert formula gives

u(x, t) = 1

2
[f(x+ 3t) + f(x− 3t)] + 1

2·3

∫ x+3t

x−3t

g(s) ds.

Letting x = 2 and t = 4 we find that the only points on the x-axis that can influence
the solution are in the interval −10 ≤ x ≤ 14.

A–4. Let Ω be the unit disk in the plane R
2. Let −∆v1 = λ1v1, where λ1 is the lowest

eigenvalue of the Laplacian in Ω and v1(x, y) is the corresponding eigenfunction with
v1(x, y) = 0 on ∂Ω.

Use the inscribed and circumscribed squares Ω± for the disk to find numbers α and β
so that 0 < α < λ1(Ω) < β.

Solution: From the Rayleigh-Ritz quotient, if λ1(Ω) is the lowest eigenvalue of the
Laplacian with zero Dirichlet boundary condition and if Ω ⊂ Ω+, then λ1(Ω+) < λ1(Ω).

Apply this where Ω+ is the square with corners at (±1,±1) and (±1,∓1). Recall (or
compute!) that for a rectangle in the plane with sides a and b then the eigenvalues of
the Laplacian are

λk,ℓ =

(

kπ

a

)2

+

(

ℓπ

b

)2

, ℓ = 1, 2, 3, . . .

so for our circumscribed square (a = b = 2), λ1(Ω) > λ1(Ω+) = 2π2

4
.

Similarly, for the inscribes square Ω− (so a = b =
√
2), λ1(Ω) < λ1(Ω−) = 2π2

2
.

A–5. Let Ω ⊂ R
3 be a bounded region with smooth boundary ∂Ω. Let u and v be harmonic

functions in Ω with u = f on ∂Ω and v = g on ∂Ω. If f ≥ g, show that u ≥ v in Ω.

Solution: Let w = u − v. Then ∆w = ∆u − ∆v = 0 while w = f − g ≥ 0 on the
boundary. By the maximum principle, w ≥ 0 in Ω. Thus u ≥ v in Ω.

Part B 5 standard problems (15 points each, so 75 points)

B–1. Suppose f(x) =

{

−1 for −π ≤ x ≤ 0

1 for 0 < x ≤ π
.
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a) Compute the Fourier series of f(x) for the interval −π ≤ x ≤ π.

Solution: The Fourier series is

f(x) ∼ a0 +
∞
∑

k=1

[ak cos kx+ bk sin kx] , (1)

where

a0 =
1

2π

∫ π

−π

f(x) dx, ak =
1

π

∫ π

−π

f(x) cos kx dx, bk =
1

π

∫ π

−π

f(x) sin kx dx.

Because f is odd, the ak = 0. Also,

bk =
2

π

∫ π

0

sin kx dx = − 2

kπ
cos kx

∣

∣

∣

∣

π

0

=

{

0 k even
4

kπ
k odd

Thus,

f(x) ∼ 4

π

[

sinx+
sin 3x

3
+

sin 5x

5
+

sin 7x

7
+ · · ·

]

.

b) Draw a graph of the Fourier series (computed above) for −2π ≤ x ≤ 2π and put
an ”X” at all points of discontinuity.

Solution: https://upload.wikimedia.org/wikipedia/commons/thumb/2/2c/Fourier_Series.svg/18

There are jump discontinuities at x = kπ, k = 0,±1,±2, . . ..

c) Give a formula relating the Fourier coefficients to
∫ π

−π
f2(x) dx.

Solution: Taking the inner product of both sides of the formula (1) with itself
gives the Parseval formula (a generalization of the Pythagorean Theorem)

1

2π

∫ π

−π

f2(x) dx = a20 +
1

2

∞
∑

k=1

[

a2k + b2k
]

For this example it results in the hardly obvious formula

π2

8
= 1 +

1

32
+

1

52
+

1

72
+ · · ·

B–2. Use separation of variables to solve the wave equation utt = uxx for 0 ≤ x ≤ π with

boundary conditions: u(0, t) = 0 and ux(π, t) = 0,

and

initial conditions: u(x, 0) = sin(3x/2)− 7 sin(5x/2) and ut(x, 0) = 0.

Solution: We seek special solutions of this wave equation of the form u(x, t) =
v(x)T (t) where v(0) = 0 and vx(π) = 0. This gives

T̈ (t)

T
=

v′′(x)

v
= −λ,
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where, using the boundary conditions on v in the Rayleigh quotient, we find that the
constant λ > 0. Thus,

T̈ (t) + λT = 0 and v′′(x) + λv = 0.

The solution of the equation for v gives

v(x) = C cos
√
λx+D sin

√
λx = 0,

where C and D are constants. The boundary condition v(0) = 0 shows that C = 0
while the boundary condition vx(π) = 0 implies that D

√
λ cos(

√
λπ) = 0. This second

boundary condition shows that
√
λπ must be an odd multiple of π/2, that is,

√
λk = k/2

for some odd integer k (so λk = k2/4).

Using this we can solve the ODE for Tk(t):

Tk(t) = Ak cos(kt/2) +Bk sin(kt/2) (k odd)

and thus obtain the standing wave solutions

uk(x, t) = [Ak cos(kt/2) +Bk sin(kt/2)] sin(kx/2) (k odd)

The general solution of the wave equation with these boundary conditions is thus

u(x, t) =
∑

k odd

[Ak cos(kt/2) +Bk sin(kt/2)] sin(kx/2).

We now choose the coefficients Ak and Bk to satisfy the initial conditions:

sin(3x/2)− 7 sin(5x/2) = u(x, 0) =
∑

k odd

Ak sin(kx/2) (2)

and
0 = ut(x, 0) =

∑

k odd

Bk(k/2) sin(kx/2). (3)

Initial condition (2) implies that A3 = 1, A5 = −7 and the other Ak = 0 while initial
condition (3) implies that all the Bk = 0. Consequently,

u(x, t) = cos(3t/2) sin(3x/2)− 7 cos(5t/2) sin(5x/2).

B–3. For −∞ < x < ∞ and t > 0 consider the diffusion equation

ut = uxx + 2ux + u with u(x, 0) = e−x2
(4)
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a) Show that by making the change of variables u(x, t) = eax+btv(x, t) using a clever
choice of the constants a and b, the function v satisfies the standard diffusion
equation

vt = vxx

but with a modified initial condition, v(x, 0).

Solution: We compute:

ut = eax+btvt + beax+btv, ux = eax+btvx + aeax+btv,

uxx = eax+btvxx + 2aeax+btvx + a2eax+btv.

In these variables, after canceling the common eax+bt factors the equation (4) be-
comes

vt + bv = vxx + 2avx + a2v + 2(vx + av) + v,

that is,
vt = vxx + (2a+ 2)vx + (a2 + 2a+ 1− b)v.

To eliminate the vx term let a = −1. Then eliminate the v term by choosing
b = 0. Thus, the resulting change of variables is u(x, t) = e−xv(x, t). The resulting
equation for v is, as desired,

vt = vxx

with initial condition
v(x, 0) = exu(x, 0) = ex−x2

.

b) Use this to write a formula (involving an integral) for the solution of equation (4)
with the specified initial condition.

Solution: Using the standard formula for the solution of the heat equation with
given initial value, we obtain

v(x, t) =
1√
4πt

∫

∞

−∞

e
(x−y)2

4t ey−y2 dy

Therefore

u(x, t) =
e−x

√
4πt

∫

∞

−∞

e
(x−y)2

4t ey−y2 dy

Remark: In this problem we tried the substitution u(x, t) = eax+btv(x, t) and
were “lucky” that we could find constants a and b so that it was useful. Instead
of relying on luck (or intuition), we could have tried the more general substitution
u(x, t) = ϕ(x, t)v(x, t) and, without being smart, been led to this. This more
general approach also is effective in some cases where the coefficients of ux and u
in the original equation are not necessarily constants. This is a valuable exercise.
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B–4. For (x, y, z) ∈ R
3, let u(x, y, z, t) be a solution of the Klein-Gordon equation

utt −∆u+ u = 0.

Let

E(t) = 1

2

∫∫∫

R3

[

u2t + |∇u|2 + u2
]

dVol.

a) Assuming |u(x, y, t)| is small for R =
√

x2 + y2 + z2 → ∞, show that E(t) is a
constant.

Solution:
dE

dt
=

∫∫∫

R3

[ututt +∇u · ∇ut + uut] dVol.

On the boundary of the ball o BR of radius R centered at the origin, in spherical
coordinates the outer normal derivative ∇u ·N = ur. By Green’s Theorem

∫∫∫

BR

∇u · ∇ut dVol =

∫∫

x2+y2+z2=R2

utur dS −
∫∫

BR

ut∆u dVol.

As R → ∞, since we assumed that the solution decays for R large, the integral on
the large sphere tends to zero. Thus

dE

dt
=

∫∫∫

R3

ut[utt −∆u+ u] dVol = 0.

so E(t) is a constant.

b) Use this to state and prove a uniqueness result for the solution of the Klein-Gordon
equation with specified initial position and velocity.

Solution: Say u and v are both solutions of this partial differential equation with
the same initial conditions

u(x, y, z, 0) = v(x, y, z, 0) and ut(x, y, z, 0) = vt(x, y, z, 0)

and also decaying for R large. Let w = u − v. Then w satisfies wtt − ∆w + w = 0
in Ω, w(x, y, z, 0) = 0, wt(x, y, z, 0) and w decays for R large. By part a), the energy,
E(t), associated with w is a constant. Using the initial conditions, this constant is zero.
Because E(t) is a sum of non-negative terms, w(x, y, z, t) = 0. Consequently u = v.

B–5. Let Ω be a bounded set in R
3 with smooth boundary, let f(~x) be a smooth function

on Ω and let g(~x) be a smooth function on ∂Ω. Define

J(w) = 1

2

∫∫∫

Ω

[

|∇w|2 + 2fw
]

dVol.

6



If a smooth function u(~x) minimizes J among all smooth functions w(~x) for which
w = g on ∂Ω, show that

∆u = f in Ω and u = g on ∂Ω.

Solution: Let h(~x) be any smooth function that is zero on ∂Ω. Then for real t the
function u(~x)+ th(~x) = g(~x) on ∂Ω. By the assumed minimizing property of u we have

J(u) ≤ J(u+ th).

Therefore the function ϕ(t) := J(u + th) has a minimum at t = 0. By basic calculus,
ϕ′(0) = 0. However,

ϕ(t) = J(u+ th) = 1

2

∫∫

Ω

[

|∇u|2 + 2t∇u · ∇h+ t2|∇h|2 + 2fu+ 2tfh
]

dVol

Therefore

0 = ϕ′(0) =

∫∫∫

Ω

∇u · ∇h+ fh dVol.

By Green’s Theorem, since h = 0 on the boundary, this implies that

∫∫∫

Ω

(

−∆u+ f
)

h dVol = 0. (5)

Note that this holds for all smooth functions h that are zero on the boundary of Ω.

To show that ∆u = f throughout Ω, say ∆u− f is positive at some point p in Ω. Then
by continuity it is positive in a small ball B centered at p. Pick a smooth function
h that is positive in this small ball and zero outside of it. Then the integral in (5) is
positive, a contradiction.

There is a similar contradiction if ∆u − f is negative somewhere. Therefore ∆u = f
throughout Ω.
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