1. a) Show that \(\sqrt{2} \) is not a rational number.
 b) Show that \(\sqrt{3} \) is not a rational number.

2. a) Prove that there are infinitely many prime numbers.
 b) Prove that there are infinitely many primes of the form \(4n + 3 \) (the \(4n + 1 \) case is more difficult).

3. Let \(u \times v \) denote the cross product in \(\mathbb{R}^3 \). For a fixed vector \(u \), for which vectors \(z \) can one solve \(u \times v = z \) for \(v \)? To what extent is the solution unique?

4. If \(x \) and \(y \) are real numbers, show that the set of matrices of the form \(\begin{pmatrix} x & y \\ -y & x \end{pmatrix} \) is isomorphic to the field of complex numbers \(z = x + iy \).

5. Consider the matrix \(A = \begin{bmatrix} 1 & -1 \\ 2 & -1 \end{bmatrix} \).
 a) Is there a real invertible matrix \(P \) such that \(PAP^{-1} \) is a real diagonal matrix? If so, find \(P \). If not, state why not.
 b) Is there a complex invertible matrix \(P \) such that \(PAP^{-1} \) is a complex diagonal matrix? If so, find \(P \). If not, state why not.
 c) Think of the elements of \(A \) as belonging to the finite field \(\mathbb{Z}/5\mathbb{Z} \). Is there an invertible matrix \(P \) with entries in this finite field such that \(PAP^{-1} \) is a \(\mathbb{Z}/5\mathbb{Z} \)-valued diagonal matrix? If so, find \(P \). If not, state why not.

6. Suppose that for a polynomial \(p \in \mathbb{Z}[x] \) we have \(p(2003) = 2003 \). Show that \(p \) can have at most three different integer roots. [Remark: 2003 is a prime number.]

7. The quaternions can be defined as expressions of the form \(q = x + yi + zj + wk \), where \(x, y, z, \) and \(w \) are real numbers. They are added as vectors and multiplied using the rules \(i^2 = j^2 = k^2 = -1, \ ij = k = -ji, \ jk = i = -kj, \ ki = j = -ik \) and the usual distributive rules. Define the conjugate by \(\bar{q} = x - yi - zj - wk \).
 a) Compute \(q\bar{q} \). Use this to show that every \(q \neq 0 \) has a multiplicative inverse. Thus show that the quaternions are a field, except they are not commutative under multiplication.
b) Prove that the unit quaternions, that is, those \(q \) with \(x^2 + y^2 + z^2 + w^2 = 1 \) form a group under multiplication, and that this group is isomorphic to \(SU_2 \). Note that clearly the unit quaternions can also be thought of as points on the unit sphere \(S^3 \subset \mathbb{R}^4 \).

c) Let
\[
I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad i = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}, \quad j = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \quad k = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}.
\]
Show that the set of matrices of the form \(Q = xI + yi + zj + wk \) is isomorphic to the quaternions.

8. Consider the ring whose elements are
\[
q = a + bi + cj + dk, \quad \text{where} \quad i^2 = j^2 = k^2 = -1, \quad ij = -ji = k,
\]
with \(a, b, c, d \in \mathbb{Z}/p\mathbb{Z} \), where \(p \) is a prime.
Show that this ring is isomorphic to the ring of \(2 \times 2 \) matrices \(\mathbb{Z}/p\mathbb{Z} \) if \(p \) is odd but not if \(p = 2 \).

9. Every group of order 437 is abelian. Proof or counterexample.

10. Let \(G \) be a finite group of order \(n \) and \(H \) a subgroup of order \(k \).
 a) Prove that \(n \) is divisible by \(k \).
 b) Conversely, if \(n \) is divisible by \(k \), must \(G \) have a subgroup of order \(k \)? Proof or counterexample.

11. Let \(p \) be a prime number and \(G = \mathbb{Z}/p\mathbb{Z} \). Find the total number of group homomorphisms \(G \times G \to G \times G \).

12. If \(G \) is a finite group and \(x, y \in G \), then \(o(xy) = o(yx) \). Proof or counterexample.

13. Let \(G \) be a finite abelian group of odd order. Prove that the product of all the elements of \(G \) is the identity.

14. a) Let \(p(x) \) be a polynomial with real coefficients. If \(z \in \mathbb{C} \) is a root, show that \(\overline{z} \) is also a root.
 b) \(p(x) \) be a polynomial with integer coefficients. If \(x = 5 + 2\sqrt{3} \) is a root, show that \(x = 5 - 2\sqrt{3} \) is also a root.
15. Suppose that H is a non-trivial subgroup of the additive group $(\mathbb{R}, +)$ of real numbers.
 a) Show that either (i) H is infinite cyclic, or (ii) for any $\epsilon > 0$, there is an $x \in H$ with $0 < x < \epsilon$.
 b) If H is infinite cyclic, prove that \mathbb{R}/H is isomorphic to the multiplicative group $S^1 = \{ z \in \mathbb{C} : |z| = 1 \}$ of complex numbers of modulus 1.

16. Suppose G is a finite group, H is a normal subgroup of G, and P is a Sylow subgroup of H. Prove that $G = H \cdot N_G(P)$.

17. In each case, decide whether the two groups are isomorphic:
 a) $(\mathbb{Z}, +)$ and $(\mathbb{Q}, +)$
 b) $(\mathbb{R}, +)$ and $(\mathbb{R}_{>0}, \cdot)$
 c) $(\mathbb{Q}, +)$ and $(\mathbb{Q}_{>0}, \cdot)$
 d) (\mathbb{R}^*, \cdot) and (\mathbb{C}^*, \cdot)

18. Suppose $a, b, c \in \mathbb{Q}$ are such that $a + b + c$, $ab + bc + ca$ and abc are all integers. Prove that a, b and c are integers. Can you generalize this?

19. Suppose $f(x) = ax^2 + bx + c$ has real coefficients and no real roots. Prove that the quotient ring $\mathbb{R}[x]/(f(x))$ is isomorphic to the field of complex numbers \mathbb{C}.

20. Suppose we are given a surjective ring homomorphism from the polynomial ring $\mathbb{C}[x]$ onto an integral domain R. Prove that R is isomorphic to either $\mathbb{C}[x]$ or \mathbb{C}.

21. Let $k, n \in \mathbb{N}$ How many group homomorphisms are there from $\mathbb{Z}/k\mathbb{Z}$ to $\mathbb{Z}/n\mathbb{Z}$? Justify your assertions.

22. Let G be a group and let H be the subgroup generated by all elements of order 2 in G. Show that H is normal in G. [Note: If $S = \emptyset$, remember group generated by $S = \{ 1 \}$.]

23. Let G be a finite group and suppose G possesses a (normal) subgroup H with the two properties
 a). $(G : H) = 2$
 b). H has odd order
 Show directly (no Sylow, no Cauchy) that G has an element exactly of order 2.

24. Suppose G is a group in which each element ($\neq 1$) has order 2. Prove that G is abelian.
25. (variant of the previous problem) Let G be a non-abelian group of order 2^k for some integer $k \geq 3$. Prove that G has an element of order 4 (no Sylow, no Cauchy).

26. Let G be a finite group and let Φ be the intersection of all the maximal subgroups of G. Suppose that there exists an element $\sigma \in G$ such that σ together with Φ generates all of G. Show that G is a cyclic group.

27. Let $\phi(n)$ be the number of integers q with $1 \leq q \leq n-1$ such that q is relatively prime to n.
 a) If $(k,n) = 1$, show that $\phi(kn) = \phi(k)\phi(n)$.
 b) If p is prime, show $\phi(p^a) = p^{a-1}(p - 1)$.

28. Let G be a finite group of order g, and let M be a minimal non-trivial subgroup of G. Show that M is cyclic of prime order p. Show further that $p \mid g$.

29. Let A_4 be the alternating group on four letters. It has order 12. Prove that it has no subgroup of order 6.

30. Prove that a group is abelian if and only if the map $\phi : a \mapsto a^{-1}$ is an isomorphism.

31. If G is a group of odd order, show that the map $\phi(a) = a^{-1}$ has precisely one fixed point. [Remark: The converse is also true, but harder.]

32. Let ψ be an automorphism of a group G. Write $\text{Fix}(\psi)$ for the set of fixed points of ψ, that is,
$$\text{Fix}(\psi) = \{ \sigma \in G \mid \psi(\sigma) = \sigma \}.$$
Show that $\text{Fix}(\psi)$ is a subgroup of G.

33. Let G be a finite group and let S be a non-empty subset of G. Write
$$Z(S) = \{ \sigma \in G \mid \sigma s = s \sigma \text{ for all } s \in S \}$$
$$N(S) = \{ \tau \in G \mid \tau s \tau^{-1} \subseteq S \text{ for all } s \in S \}.$$
Then $Z(s)$ and $N(S)$ are sub-groups of G.
 a) Show that $Z(s) \subseteq N(S)$ and
 b) $Z(s)$ is a normal subgroup of $N(S)$.

4
34. If G is a finite group of order g, and if for each $\sigma \in G$ we have an $n \times n$ invertible
matrix (over \mathbb{C}), say $T(\sigma)$, in such a way that $T(\sigma \tau) = T(\sigma)T(\tau)$, show that every
eigenvalue of each $T(\sigma)$ is a g^{th} root of unity.

35. Let $f(x)$ be a monic polynomial with real coefficients. Say

$$f(x) = p_1(x) \cdots p_k(x)$$

is a factorization of f into monic irreducible polynomials with real coefficients (repeat-
tions are permitted). Prove that each $p_j(x)$ has one of the forms

$$x - \alpha \quad \text{or} \quad x^2 - \beta x + \gamma,$$

where α, β, and γ are real numbers.

36. Let $f(x)$ be an irreducible polynomial with rational coefficients, and let $f'(x)$ be its
derivative. Show that there exist two polynomials $p(x), q(x)$ with rational coefficients
such that

$$p(x)f(x) + q(x)f'(x) = 1.$$

Illustrate this for $f(x) = x^3 - 3x + 1$.

37. Let G be an abelian group and suppose that T is a homomorphism of G to the group
$GL(n)$ of $n \times n$ invertible complex matrices. Suppose that for some $\sigma \in G$ the non-zero
vector v is an eigenvector of the matrix $T(\sigma)$ with corresponding eigenvalue λ.

a) Show that $\lambda \neq 0$.

b) Show that for each $\tau \in G$, the vector $T(\tau)v$ is also an eigenvector of $T(\sigma)$ with
the same eigenvalue λ.

38. a) If p_1, \ldots, p_n are n given integers and if (p_1, \ldots, p_n) appears as a row of an $n \times n$
integer matrix of determinant 1, show that the p_j have no non-trivial common
factor.

b) Prove the converse in the case $n = 2$, that is, if p_1 and p_2 are relatively prime,
then (p_1, p_2) appears as a row of a 2×2 integer matrix whose determinant is 1.

39. Let σ be an element of a group and assume the order of σ is finite, say n. Write
$\tau = \sigma^\ell$. Show that σ and τ have the same order if and only if $(\ell, n) = 1$.
40. Let \(f(x) = x^3 - ax + 1 \), where \(a \) is an integer. Prove that \(f(x) \) is irreducible over the rationals provided \(a \neq 0 \) or \(a \neq 2 \). Further, in the cases \(a = 0 \) and \(a = 2 \), give the factorization of \(f(x) \).

41. Let \(f(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_0 \) be a polynomial with complex coefficients. Show that by a linear substitution \(y = x - \alpha \) for some \(\alpha \in \mathbb{C} \) the polynomial \(f(x) \) transforms to \(g(y) = y^n + b_{n-2}y^{n-2} + \cdots + b_0 \) with no \(y^{n-1} \) term. Find \(\alpha \) explicitly in terms of the coefficients of \(f \).

42. Let \(G \) be a finite group and write \(Z \) for the center of \(G \), that is, the subgroup of all elements of \(G \). Prove that the index \((G : Z) \) is never a prime number. [An easier version is to prove that \((G : Z) \neq 2 \).]

43. Every prime ideal of \(\mathbb{Z}[X] \) is maximal. Proof or counterexample.

44. Give (with proof) an example of a commutative ring \(R \) and an ideal \(I \) in \(R \) which cannot be generated by one element.

45. Let \(\sigma \) be an element of a group \(G \) and suppose that \(\sigma \) has order \(n \). Write \(n = ab \) with \((a,b) = 1 \). Show there exist unique elements \(\rho, \tau \in G \) with \(\rho \) of order \(a \) and \(\tau \) of order \(b \) such that \(\sigma = \rho \tau = \tau \rho \).

46. Let \(G \) be the multiplicative group of \(2 \times 2 \) integer matrices with determinant 1. Find \(\sigma, \tau \in G \) with \(\sigma^4 = \tau^6 = 1 \) and \(G \) generated by \(\sigma \) and \(\tau \). Show further that \(\sigma \tau \) has infinite order.

47. For a finite group \(G \), write \(\mathbb{Z}[G] \) for the set of formal linear combinations

\[
\sum_{\sigma \in G} \lambda_\sigma \sigma, \quad \text{where} \quad \lambda_\sigma \in G.
\]

Add these component-wise and multiply by using the group law and distributivity. There is a map from the ring \(\mathbb{Z}[G] \), so obtained, to \(\mathbb{Z} \), namely

\[
\sum_{\sigma \in G} \lambda_\sigma \sigma \mapsto \sum_{\sigma \in G} \lambda_\sigma.
\]

This is a ring homomorphism. Let \(I \) be its kernel. Show that \(I \) is generated as an ideal by all elements \(\{ \sigma - 1, \sigma \in G \} \).
48. Let G be a group generated by two elements σ τ. Suppose that $\sigma^3 = \tau^3 = 1$. Prove that $\tau \sigma \tau^{-1} \neq \sigma^{-1}$.

49. Let $\mathbb{N} = \{1, 2, 3, \ldots\}$ and write Σ for the group of all one-to-one maps of N onto itself having the property:

If $\phi \in \Sigma$ there is some $n = n(\phi)$ such that $m > n$ implies $\phi(m) = m$.

Find all the normal subgroups of Σ.

50. For positive integers n and k, define $d_k(n) = \begin{cases} 1 & \text{if } n \nmid k \\ 1 - n & \text{if } n \mid k \end{cases}$. Show that

$$\sum_{k=1}^{\infty} \frac{d_k(n)}{-k} = \log n \quad (n > 1).$$

51. Let α be a complex number with the following two properties:

a) α is a root of $X^n + a_1X^{n-1} + \cdots + a_n = 0$, where the coefficients are integers.

b) There is a prime number p so that $p\alpha$ is an integer.

Show that α is an integer.

52. For each of the statements below give an example with details or a short statement why such an example cannot exist.

a) A non-cyclic group of order 289 whose center is cyclic.

b) If p is a prime number, a finite field with $2p^3$ elements.

c) An infinite abelian group all of whose (proper) subgroups are finite.

d) A ring with no two-sided ideals but with many left ideals.

e) A vector space V over a field k so that V has 100 elements.

53. Give examples of the following:

a) A finite commutative group that is not cyclic.

b) A commutative ring (that is not a field) with finitely many elements.

c) A commutative ring (that is not a field) with infinitely many elements.

d) A non-commutative ring with infinitely many elements.
e) A non-commutative ring with finitely many elements.

54. For each of the statements below give an example with details or a short statement why such an example cannot exist.

a) For each integer \(n \geq 1 \), a polynomial \(p(x) \) of degree \(n \) (with rational coefficients) that is irreducible over the rational numbers.

b) A non-abelian group all of whose subgroups are normal.

c) A non-abelian group all of whose proper subgroups are abelian.

d) A field \(k \) in which every homogeneous polynomial in two variables and having degree \(d > 1 \) has a non-trivial zero. [Here “homogeneous” means for some integer \(j \) we have \(f(cx, cy) = c^j f(x, y) \) for all \(c \in k \) while a non-trivial zero means \(f(\xi, \eta) = 0 \) for some \(\xi, \eta \), at least one of which is not zero.]

e) A finite group \(G \) of order \(g \) and a positive integer \(h \) so that \(h \mid g \) but \(G \) has no subgroup of order \(h \).

55. Let \(R \) be a PID with the property that there exists a ring homomorphism \(\phi : R \to \mathbb{Z} \). Prove that \(\phi \) is an isomorphism. [Note: Part of the hypothesis is that \(\phi(1) = 1 \).]

56. Prove that the additive group of rational numbers has no proper maximal subgroup.

57. Let \(G \) be a finite group and let \(M_1, \ldots, M_n \) be the list of all its maximal subgroups. Write \(H \) for the intersection \(H = M_1 \cap \cdots \cap M_n \).

a) \(H \triangleleft G \).

b) If an element \(\sigma \in G \) together with the elements of \(H \) generate \(G \), then \(G \) is a cyclic group.

58. Suppose that \(a, b \) and \(c \) are rational numbers satisfying \(a + b\sqrt{2} + c\sqrt{3} = 0 \). Prove that \(a = b = c = 0 \).

59. a) Let \(G \) be a finite group such that \(G/C(G) \) is cyclic. Here \(C(G) \) denotes the center of \(G \). Show that \(G \) is abelian.

b) Show that any group of order \(p^2 \) where \(p \) is prime is abelian.

60. Let \(T : \mathbb{R}^3 \to \mathbb{R}^3 \) be a linear transformation such that \(T(v) \perp v \) for any \(v \in \mathbb{R}^3 \). Show that \(T \) is anti-symmetric.
61. Let F be a field with 17 elements.
 a) How many roots does the equation $x^5 = 1$ have in F?
 b) How many roots does the equation $x^4 = 1$ have in F?

62. Give an example of a polynomial ring with invertible elements of positive degree.

63. Does the polynomial $x^{12} - 3x^8 + 1$ have multiple complex roots?

64. Let G be the group of isometries of the three dimensional euclidean space which stabilize a given cube.
 a) What is the cardinality of G?
 b) Is G simple? (In other words, does G have a non-trivial normal subgroup?)
 c) Does G have an element of order 12?

65. Prove that the multiplicative group of non-zero real numbers does not have a subgroup of index 3.

66. Denote by M the ring of 5×5 matrices with integer elements.
 a) Does M have a subring isomorphic to $\mathbb{Z}[x]$, the ring of one-variable polynomials with integer coefficients?
 b) Does M have a subring isomorphic to the factor ring of $\mathbb{Z}[x]$ modulo the ideal generated by $x^3(x - 1)^2$?

67. Does the ring of 3×3 matrices over the reals contain a subring isomorphic to
 a) the field of complex numbers?
 b) the division ring of quaternions?

68. Compute the endomorphism ring of the additive group \mathbb{Q}^+ of rationals. Does \mathbb{Q}^+ contain maximal subgroups?

69. If F is a division ring such that the multiplicative group of nonzero elements of F is a finite direct sum of cyclic groups, then F is a finite field.

70. Let G be the rotation group of a cube.
a) What is the cardinality of G?

b) Is G isomorphic to a symmetric group S_n for some n?

71. Suppose that for a polynomial $p \in \mathbb{Z}[x]$ we have $p(2003) = 2003$. Show that p can have at most three different integer roots. [REMARK: 2003 is a prime number.]

72. Decompose the group algebras $Q(\mathbb{Z}_4)$ and $C(\mathbb{Z}_4)$ into direct sums of their indecomposable ideals, i.e., decompose $F[g]$ into a direct sum of its indecomposable ideals where g is the image of x in the factor ring $F[x]/(x^4 - 1)$ and F is a field Q or C of either rational or complex numbers, respectively.

73. Describe all groups of order 6.

74. Let \mathbb{Z}_2 denote the field of residue classes modulo 2 and consider the four factor rings:

 a). $R_1 = \mathbb{Z}_2[x]/(x^3 + x^2)$
 b). $R_2 = \mathbb{Z}_2[x]/(x^3 + x^2 + x)$
 c). $R_3 = \mathbb{Z}_2[x]/(x^3 + x^2 + 1)$
 d). $R_4 = \mathbb{Z}_2[x]/(x^3 + x^2 + x + 1)$

Determine:

a) Which (if any) of them contain(s) nonzero nilpotent elements?

b) Which (if any) of them contain(s) zero divisors?

c) Which (if any) of them form(s) a field?

d) Whether any two of these rings are isomorphic to each other.

75. If a polynomial $p(x_1, \ldots, x_n)$ is the square of a rational function $r(x_1, \ldots, x_n)$, show that r must itself be a polynomial.

76. Say A is a commutative ring containing a field k, so that A, as a vector space over k, is finite dimensional. If A is an integral domain, prove that it must be a field. [SUGGESTION: Consider the ideals (a^n), where a is a fixed element of A.]

[Last revised: February 8, 2009]