Homework Set 6
DUE: Thurs. Nov. 2, 2006. Late papers accepted until 1:00 Friday.

Math 508, Fall 2006

1. If $L : \ell_2 \to \ell_2$ is defined by $LX := (c_1x_1, c_2x_2, c_3x_3, \ldots)$, where c_j is a bounded sequence, is L is bounded? Proof or counterexample.

2. Show that a linear map $L : V \to W$ between normed vector spaces V and W is continuous at any point X_0 if and only if L is continuous at the origin.

3. [CONTINUATION] Show that a linear map $L : V \to W$ is continuous if and only if it is bounded.

4. Let \mathcal{M} and \mathcal{N} be metric spaces and $f : \mathcal{M} \to \mathcal{N}$ be a continuous map. Say $f : p \mapsto q$ and $r \in \mathcal{N}$ with $r \neq q$. Show there is some neighborhood of p whose image does not contain r. In other words, there is some open set $U \subset \mathcal{M}$ containing p with the property that $r \not\in f(U)$.

5. Let f be a continuous map from $[0, 1]$ to itself. Show that f has at least one fixed point, that is, a point c so that $f(c) = c$.

6. Show that at any time there are at least two diametrically opposite points on the equator of the earth with the same temperature.

7. [Rudin, p. 98 # 3]. Let \mathcal{M} be a metric space and $f : \mathcal{M} \to \mathbb{R}$ a continuous function. Denote by $Z(f)$ the zero set of f. These are the points $p \in \mathcal{M}$ where f is zero, $f(p) = 0$.
 a) Show that $Z(f)$ is a closed set.
 b) [See also Rudin, p. 101 #20] Given any set $E \in \mathcal{M}$, the distance of a point x to E is defined by
 $$h(x) = \rho_E(x) := \inf_{z \in E} d(x, z).$$
 Show that h is a uniformly continuous function.
 c) Use the previous part to show that given any closed set $E \in \mathcal{M}$, there is a continuous function that is zero on E and positive elsewhere.
8. [Rudin, p. 98 # 4]. Let \(f \) and \(g \) be continuous mappings of a metric space \(X \) into a metric space \(Y \) and let \(E \) be a dense subset of \(X \).

 a) Prove that \(f(E) \) is dense in \(f(X) \).

 b) If \(g(p) = f(p) \) for all \(p \in E \), prove that \(g(p) = f(p) \) for all points \(p \) in \(X \). Thus, a continuous function is determined by its values in a dense subset of its domain.

9. [Rudin, p. 99 # 7]. For points \((x, y) \neq (0, 0) \in \mathbb{R}^2\), define

 \[
 f(x, y) = \frac{xy^2}{x^2 + y^4} \quad \text{and} \quad g(x, y) = \frac{xy^2}{x^2 + y^6},
 \]

 while define \(f(0, 0) = 0 \) and \(g(0, 0) = 0 \).

 a) Show that \(f \) is bounded in \(\mathbb{R}^2 \) but not continuous at the origin, while \(g \) is unbounded in every neighborhood of the origin and hence also not continuous there.

 b) Let \(S \in \mathbb{R}^2 \) be any straight line through the origin. Show that if the points \((x, y)\) are strict to lie on \(S \), then both \(f(x, y) \) and \(g(x, y) \) are continuous. MORAL: It can be misleading to understand a function by only examining it on straight lines.

10. [Rudin, p. 99 # 8]. Let \(E \subset \mathbb{R} \) be a set and \(f : E \to \mathbb{R} \) be uniformly continuous.

 a) If \(E \) is a bounded set, show that \(f(E) \) is a bounded set.

 b) If \(E \) is not bounded, give an example showing that \(f(E) \) might not be bounded.

11. [Rudin, p. 99 # 13 or #11] extension by continuity Let \(X \) be a metric space, \(E \subset X \) a dense subset, and \(f : E \to \mathbb{R} \) a uniformly continuous function. Show that \(f \) has a unique continuous extension to all of \(X \). That is, there is a unique continuous function \(g : X \to \mathbb{R} \) with the property that \(g(p) = f(p) \) for all \(p \in X \). [REMARK: One generalize this by replacing \(\mathbb{R} \) by any complete metric space.]

12. [Rudin, p. 101 # 23]. A real-valued function \(f : (a, b) \to \mathbb{R} \) is called convex if

 \[
 f(tx + (1-t)y) \leq tf(x) + (1-t)f(y) \quad \text{for all} \ x, y \in (a, b) \quad \text{and} \quad 0 < t < 1.
 \]

 a) Prove that every convex function is continuous.

 b) Prove that every increasing convex function of a convex function is convex. Example: Assuming \(e^t \) is convex (it is), if \(f \) is convex then so is \(e^{f(x)} \).
13. [Rudin, p. 101 # 24]. [CONTINUATION] Assume that $f : (a,b) \to \mathbb{R}$ is continuous and has the property that

$$f\left(\frac{x+y}{2}\right) \leq \frac{f(x) + f(y)}{2} \quad \text{for all} \quad x, y \in (a,b).$$

Prove that f is convex. [REMARK: One can use this to give a short proof of the arithmetic-geometric mean inequality. Homework Set 3 #10].