Homework Set 7
DUE: Thurs. Nov. 9, 2006. Late papers accepted until 1:00 Friday.

Math 508, Fall 2006

Note: We say a function is smooth if its derivatives of all orders exist and are continuous.

1. Which of the following are uniformly continuous in the set \(\{x \geq 0\} \)? Justify your assertions.
 a). \(f(x) = 2 + 3x \)
 b). \(g(x) = \sin 2x \)
 c). \(h(x) = x^2 \)
 d). \(k(x) = \sqrt{x} \),

2. a) Show that \(\sin x \) is not a polynomial.
 b) Show that \(\sin x \) is not a rational function, that is, it cannot be the quotient of two polynomials.
 c) Let \(f(t) \) be periodic with period 1, so \(f(t + 1) = f(t) \) for all real \(t \). If \(f \) is not a constant, show that it cannot be a rational function. That is, \(f \) cannot be the quotient of two polynomials.
 d) Show that \(e^x \) is not a rational function.

3. a) If a smooth curve \(y = f(x) \) has the property that \(f''(x) \geq 0 \), show that it is convex.
 b) Let \(v(x) \) be a smooth real-valued function for \(0 \leq x \leq 1 \). If \(v(0) = v(1) = 0 \) and \(v''(x) > 0 \) for all \(0 \leq x \leq 1 \), show that \(v(x) \leq 0 \) for all \(0 \leq x \leq 1 \).
 c) Prove that the function \(e^x \) is convex.
 d) Show that \(e^x \geq 1 + x \) for all real \(x \).

4. a) Let \(p(x) := x^3 + cx + d \), where \(c \) and \(d \) are real. Under what conditions on \(c \) and \(d \) does this have three distinct real roots? [Answer: \(c < 0 \) and \(d^2 < -4c^3/27 \)].
 b) Generalize to the real polynomial \(p(x) := ax^3 + bx^2 + cx + d \) \((a \neq 0) \) by a change of variable \(t = x - \alpha \) (with a clever choice of \(\alpha \)) to reduce to the above special case.

5. Let a smooth function \(g(x) \) have the three properties: \(g(0) = 2 \)
 \(g(1) = 0 \)
 \(g(4) = 6 \). Show that at some point \(0 < c < 4 \) one has \(g''(c) > 0 \). Better yet, find a number \(m > 0 \) so that \(g''(c) \geq m > 0 \).
 Is it true that \(g'' \) must be positive at at least one point \(0 < c < 1 \) ? Proof or counterexample.
6. Let \(\mathbf{r}(t) \) define a smooth curve that does not pass through the origin.
 a) If the point \(\mathbf{a} = \mathbf{r}(t_0) \) is a point on the curve that is closest to the origin (and not an end point of the curve), show that the position vector \(\mathbf{r}(t_0) \) is perpendicular to the tangent vector \(\mathbf{r}'(t_0) \).
 b) What can you say about a point \(\mathbf{b} = \mathbf{r}(t_1) \) that is furthest from the origin?

7. If \(h : \mathbb{R} \to \mathbb{R} \) is a differentiable function that satisfies \(h'(t) \leq ch(t) \), where \(c \) is a constant, show that \(h(t) \leq e^{ct}h(0) \) for all \(t \geq 0 \).

8. Say \(u(t) \) satisfies \(u'' + b(t)u' + c(t)u = 0 \), where \(b(t) \) and \(c(t) \) are bounded functions. Let \(E(t) := \frac{1}{2}(u'^2 + u^2) \).
 a) Show that \(E'(t) \leq \gamma E(t) \), where \(\gamma \) is a constant.
 b) Use the result of the previous problem to deduce that if \(u(0) = 0 \) and \(u'(0) = 0 \), then \(u(t) = 0 \) for all \(t \).

9. Let \(w(x) \) be a smooth function that satisfies \(w'' - c(x)w = 0 \), where \(c(x) > 0 \) is a given function, show that \(w \) cannot have a local positive maximum (that is, a local maximum where the function is positive). Also show that \(w \) cannot have a local negative minimum.

10. a) For any integer \(n \geq 0 \), show that \(\lim_{x \to 0} \frac{e^{-1/x}}{x^n} = 0 \).
 b) Define \(f : \mathbb{R} \to \mathbb{R} \) by
 \[
 f(x) = \begin{cases}
 e^{-1/x} & \text{for } x > 0, \\
 0 & \text{for } x \leq 0,
 \end{cases}
 \]
 Sketch the graph of \(f \).
 c) Show that \(f \) is a smooth function for all real \(x \)
 d) Show that each of the following are smooth and sketch their graphs:
 \[
 g(x) = f(x) - f(1-x) \quad h(x) = \frac{f(x)}{f(x) + f(1-x)} \\
 k(x) = h(x)h(4-x) \quad K(x) = k(x+2), \\
 \phi(x,y) = K(x)K(y), (x,y) \in \mathbb{R}^2 \quad \Phi(x) = K(||x||), x = (x_1,x_2) \in \mathbb{R}^2
 \]