Homework Set 8
DUE: Thurs. Nov. 16, 2006. Late papers accepted until 1:00 Friday.

Math 508, Fall 2006

Jerry Kazdan

Note: We say a function is smooth if its derivatives of all orders exist and are continuous.

1. Let \(r(t) \) describe a smooth curve in \(\mathbb{R}^3 \) and let \(V \) be a fixed vector. If \(r'(t) \) is perpendicular to \(V \) for all \(t \) and if \(r(0) \) is perpendicular to \(V \), show that \(r(t) \) is perpendicular to \(V \) for all \(t \).

2. A diffeomorphism is a smooth invertable map whose inverse map is also smooth.
 a) Find a diffeomorphism \(f : \mathbb{R} \to \mathbb{R}_+ \), where \(\mathbb{R}_+ = \{ x \in \mathbb{R} | x > 0 \} \).
 b) Find a diffeomorphism \(g : \mathbb{R} \to \Omega \), where \(\Omega \) is the interval: \(\Omega = \{ x \in \mathbb{R} | 0 < x < 1 \} \).
 c) Find a diffeomorphism \(F : \mathbb{R}^2 \to \mathbb{R}_+^2 \), where \(\mathbb{R}_+^2 = \{(x,y) \in \mathbb{R}^2 | y > 0 \} \).
 d) Find a diffeomorphism \(G : \mathbb{R}^2 \to \Omega \), where \(\Omega \) is the strip: \(\Omega = \{(x,y) \in \mathbb{R}^2 | 0 < y < 1 \} \).

3. Let \(f(x) \) be a smooth function for \(x \geq 1 \) with the property that \(f'(x) \to 0 \) as \(x \to \infty \).
 a) Show that \(f(n+1) - f(n) \to 0 \) as \(n \to \infty \).
 b) Compute \(\lim_{n \to \infty} \frac{\sqrt{n+1} - \sqrt{n}}{n} \).

4. For \(x \) in any finite interval \(|x| \leq c \) prove that \(\lim_{N \to \infty} \sum_{k=0}^{N} \frac{x^k}{k!} = e^x \) by showing that the remainder in the Taylor series goes to zero.

5. [Error in Interpolation] Let \(f : [a, b] \to \mathbb{R} \) be a smooth function.
 a) Let \(g(x) \) be the straight line with the property that \(g(a) = f(a) \) and \(g(b) = f(b) \).
 For any point \(c \in [a, b] \) obtain an estimate for the error: \(f(c) - g(c) \).
 Remark: Your estimate will involve \(f''(z) \) for some point \(z \in [a, b] \). The estimate is related to the procedure used to find the error in a Taylor polynomial.
HINT: Define the constant M by $f(c) = g(c) + M(c - a)(c - b)$. Then consider the function

$$\phi(x) := f(x) - g(x) - M(x - a)(x - b).$$

b) Let $a = x_0 < x_2 < \cdots < x_k = b$ and let $g(x)$ be the polynomial of degree k that agrees with f at these $k + 1$ points, so $g(x_j) = f(x_j)$, $j = 0, 1, \ldots, k$. Obtain an estimate for the error, $f(c) - g(c)$, for any $c \in [a, b]$.

6. Let $f : [0, 1] \to \mathbb{R}$ be a continuous function.
 a) If $f(x) \geq 0$ and $\int_0^1 f(x) \, dx = 0$, prove that $f(x) = 0$ for all $x \in [0, 1]$.
 b) If $\int_0^1 f(x) \, dx = 0$, prove that $f(c) = 0$ for some $c \in (0, 1)$. Even more, prove that $f(x)$ changes sign somewhere in this interval.
 c) If $f : [0, 1] \to \mathbb{R}$ is a continuous function with the property that $\int_0^1 f(x)g(x) \, dx = 0$ for all continuous functions g prove that $f(x) = 0$ for all $x \in [0, 1]$.
 d) If $f : [0, 1] \to \mathbb{R}$ is a continuous function with the property that $\int_0^1 f(x)g(x) \, dx = 0$ for all C^1 functions g that satisfy $g(0) = g(1) = 0$, must it be true that $f(x) = 0$ for all $x \in [0, 1]$? Proof or counterexample.

7. Let $f(t)$ be a continuous function for $0 \leq t < \infty$. If $\lim_{t \to \infty} f(t) = c$, show that

$$\lim_{T \to \infty} \frac{1}{T} \int_0^T f(t) \, dt = c.$$

8. Let $f(x)$ be a continuous function for $0 \leq x \leq 1$. Evaluate $\lim_{n \to \infty} n \int_0^1 f(x)x^n \, dx$. (Justify your assertions.)

9. a) If $V = \{x, y, z\} \in \mathbb{R}^3$ and $p \geq 1$, define $\|V\|_p := \|x\|^p + \|y\|^p + \|z\|^p$
 b) If $f \in C[0, 2]$ and $p \geq 1$, define

$$\|f\|_p := \left[\int_0^2 |f(x)|^p \, dx \right]^{1/p}.$$

Show that $\lim_{p \to \infty} \|f\|_p = \max_{0 \leq x \leq 2} |f(x)|$.

10. Compute $\lim_{n \to \infty} \int_0^1 |\sin(nx)| \, dx$.

2
11. Let \(p(x) \) be a real polynomial of degree \(n \). The following uses the inner product
\[\langle f, g \rangle := \int_{0}^{1} f(x)g(x) \, dx. \]

a) If \(p \) is orthogonal to the constants, show that \(p \) has at least one real zero in the interval \(\{0 < x < 1\} \).

b) If \(p \) is orthogonal to all polynomials of degree at most one, show that \(p \) has at least two distinct real zeros in the interval \(\{0 < x < 1\} \).

c) If \(p \) is orthogonal to all polynomials of degree at most \(n - 1 \), show that \(p \) has exactly \(n \) distinct real zeros in the interval \(\{0 < x < 1\} \).

Bonus Problems

These are more challenging. If you do any of these, please give your solutions directly to me by Thursday, Nov. 30.

Bonus Problem 1 Let \(f : [0, 1] \to \mathbb{R} \) be a continuous function.

a) Show that \(\lim_{\lambda \to \infty} \int_{0}^{1} f(x) \sin(\lambda x) \, dx = 0. \)

b) (generalization) If \(\phi : \mathbb{R} \to \mathbb{R} \) is continuous with period \(P \), show that

\[\lim_{\lambda \to \infty} \int_{0}^{1} f(x)\phi(\lambda x) \, dx = \Phi \int_{0}^{1} f(x) \, dx, \]

where \(\Phi := \frac{1}{P} \int_{0}^{P} \phi(t) \, dt \) is the average of \(\phi \) over one period.

Bonus Problem 2 Let \(C \) be the ring of continuous functions on the interval \(0 \leq x \leq 1 \).

a) If \(0 \leq c \leq 1 \), show that the subset \(\{ f \in C \mid f(c) = 0 \} \) is a maximal ideal.

b) Show that every maximal ideal in \(C \) has this form.

Bonus Problem 3 Let \(a_0, a_1, \ldots \) be any sequence of real numbers. Show there is a smooth function \(f(x) \) with the property that \(a_n \) is its \(n \)th Taylor coefficient: \(a_n = \frac{1}{n!} f^{(n)}(x) \big|_{x=0} \).