Directions This exam has three parts, Part A asks for 4 examples (20 points, 5 points each). Part B has 4 shorter problems (36 points, 9 points each. Part C has 3 traditional problems (45 points, 15 points each). Total is 101 points.
Closed book, no calculators or computers- but you may use one $3^{\prime \prime} \times 5^{\prime \prime}$ card with notes on both sides.

Part A: Examples (4 problems, 5 points each so 20 points). Give an example having the specified property.

1. A subset of the real line \mathbb{R} that contains all but three of its limit points.
2. A sequence of real numbers x_{n} with the property that $\left|x_{n+1}-x_{n}\right| \rightarrow 0$ but the sequence does not converge.
3. A collection of closed intervals $A_{k} \subset \mathbb{R}, k=1,2 \ldots$, whose union is not closed.
4. A collection of bounded nested intervals $J_{1} \supseteq J_{2} \supseteq J_{3} \supseteq \cdots$ whose intersection is empty.

Part B: Short Problems (4 problems, 9 points each so 36 points)
B-1. Let $a_{k}=\sqrt{k+1}-\sqrt{k}, \quad k=1,2, \ldots$. Determine if this sequence converges.
B-2. Show that $1+\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+\ldots+\frac{1}{k!}+\ldots<2$
B-3. Given any two rational numbers $p<q$, prove there is an irrational number c between them.

B-4. Given any $c>1$, show that $\frac{c^{n}}{n!} \rightarrow 0$.

Part C: Traditional Problems (3 problems, 15 points each so 45 points)
C -1 . Let $x_{k} \geq 0$ be a sequence of real numbers that converges to A. Show that $A \geq 0$.

C-2. Given a sequence $\left\{a_{k}\right\}$ of real numbers, let $S_{n}=\frac{a_{1}+\cdots+a_{n}}{n}$ be the sequence of averages (arithmetic mean). If a_{k} converges to 0 , show that the averages S_{n} also converge to 0 .

C-3. Let $\left\{a_{n}\right\} \in \mathbb{C}$ be a contracting sequence, that is there is a $0<c<1$ so that

$$
\left|a_{n+1}-a_{n}\right| \leq c\left|a_{n}-a_{n-1}\right|, \quad n=1,2,3, \ldots
$$

a) Show that $\left|a_{n+1}-a_{n}\right| \leq c^{n}\left|a_{1}-a_{0}\right|$.
b) If $n>k$, show that $\quad\left|a_{n}-a_{k}\right| \leq \frac{c^{k}}{1-c}\left|a_{1}-a_{0}\right|$.
c) Show that the sequence a_{n} converges.

