Math 508 December 9, 2010

DIRECTIONS This exam has three parts, Part A asks for 3 examples (5 points each, so 15 points). Part B has 4 shorter problems (8 points each so 32 points). Part C has 4 traditional problems (15 points each so 60 points). Total is 107 points.

Closed book, no calculators or computers – but you may use one $3'' \times 5''$ card with notes on both sides.

Part A: Examples (3 examples, 5 points each so 15 points). Give an example having the specified property.

- 1. A function $f \in C^{1}([-1,1])$ but is not in $C^{2}([-1,1])$.
- 2. A bounded sequence a_k in a complete metric space \mathcal{M} where a_k has no convergent subsequence.
- 3. A sequence of continuous functions $f_n(x) \in C([0,1])$ that converges pointwise to zero but $\int_0^1 f_n(x) dx \ge 1$. [A clear sketch is adequate.]

Part B: Short Problems (4 problems, 8 points each so 32 points)

B-1. Let f(x) be a smooth function with the properties: f(-1) = 1, f(0) = 0, and f(1) = 1. Show that f''(c) = 2 at some $c \in (-1, 1)$. [Suggestion: Consider $g(x) := f(x) - x^2$.]

B-2. Let
$$\int_0^{2x} f(t) dt = e^{\cos(3x+1)} + A$$
. Find $f \in C(\mathbb{R})$ and the constant A .

B–3. Let $f \in C([1,3])$. Compute $\lim_{n \to \infty} \int_1^3 f(x) e^{-nx} dx$. [Justify your assertions.]

B-4. Show that
$$f(x) := \sum_{1}^{\infty} \frac{\sin(3nx^2)}{n^2}$$
 is continuous for $0 \le x \le \pi$.

Part C: Traditional Problems (4 problems, 15 points each so 60 points)

- C-1. Let A(t) and B(t) be $n \times n$ matrices that are differentiable for $t \in [a, b]$ and let $t_0 \in (a, b)$. Directly from the *definition* of the derivative, show that the product M(t) := A(t)B(t) is differentiable at $t = t_0$ and obtain the usual formula for $M'(t_0)$.
- C-2. Let K be a compact set in a complete metric space \mathcal{M} with metric d(x, y). If $p \in \mathcal{M}$ is a point not in K, let $c = \inf_{x \in K} d(p, x)$. Show there is a point $q \in K$ such that d(p, q) = c.

C-3. Let $f \in C^1([0,2])$. Given any $\epsilon > 0$ show there is a polynomial p(x) such that

 $\max_{x \in [0,2]} |f(x) - p(x)| + \max_{x \in [0,2]} |f'(x) - p'(x)| < \epsilon$

That is, $||f - p||_{C^1([0,2])} < \epsilon$.

C-4. Let f(x) and h(x, y) be continuous functions for $x, y \in [0, 2]$. Show that if the constant $\lambda > 0$ is sufficiently small, the equation

$$u(x) = f(x) + \lambda \int_0^2 h(x, y)u(y) \, dy.$$

has a unique solution $u(x) \in C([0,2])$.

Extra Problems The following are some problems that I almost put on the exam — but then it would have been much too long.

- Ex-1. Let $0 < a_n \in \mathbb{R}$ be a sequence with the property that $\frac{a_{n+1}}{a_n} \leq c, n = 1, 2, ...$ for some 0 < c < 1. Show that $a_n \to 0$.
- Ex-2. Show that a compact set in a metric space is bounded.
- Ex-3. Let \mathbb{R}^2 be the points V = (x, y) with the usual Euclidean norm $||V|| = \sqrt{x^2 + y^2}$. Using that \mathbb{R} is complete with norm |x|, prove directly that \mathbb{R}^2 is complete.
- Ex–4. If $\sum_{0}^{\infty} a_n z^n$ converges at z = R and if 0 < r < R, prove that it converges uniformly in the disk $\{z \in \mathbb{C} : |z| \le r\}$.

Ex-5. Let $\varphi_n(t)$ be a sequence of smooth real-valued functions with the properties

(a)
$$\varphi_n(t) \ge 0$$
, (b) $\varphi_n(t) = 0$ for $|t| \ge 1/n$, (c) $\int_{-\infty}^{\infty} \varphi_n(t) dt = 1$.

Note: because of (b), this integral is only over $-1/n \le t \le 1/n$. Assume f(x) is uniformly continuous for all $x \in \mathbb{R}$ and define

$$f_n(x) := \int_{-\infty}^{\infty} f(x-t)\varphi_n(t) \, dt$$

Show that $f_n(x)$ converges uniformly to f(x) for all $x \in \mathbb{R}$. Note *explicitly* where you use the uniform continuity of f.

[SUGGESTION: Use $f(x) = f(x) \left(\int_{-\infty}^{\infty} \varphi_n(t) \, dt \right) = \int_{-\infty}^{\infty} f(x) \varphi_n(t) \, dt$].