Directions This exam has three parts, Part A asks for 3 examples (5 points each, so 15 points). Part B has 4 shorter problems (8 points each so 32 points). Part C has 4 traditional problems (15 points each so 60 points). Total is 107 points.
Closed book, no calculators or computers- but you may use one $3^{\prime \prime} \times 5^{\prime \prime}$ card with notes on both sides.

Part A: Examples (3 examples, 5 points each so 15 points). Give an example having the specified property.

1. A function $f \in C^{1}([-1,1])$ but is not in $C^{2}([-1,1])$.
2. A bounded sequence a_{k} in a complete metric space \mathcal{M} where a_{k} has no convergent subsequence.
3. A sequence of continuous functions $f_{n}(x) \in C([0,1])$ that converges pointwise to zero but $\int_{0}^{1} f_{n}(x) d x \geq 1$. [A clear sketch is adequate.]

Part B: Short Problems (4 problems, 8 points each so 32 points)
$\mathrm{B}-1$. Let $f(x)$ be a smooth function with the properties: $f(-1)=1, f(0)=0$, and $f(1)=1$. Show that $f^{\prime \prime}(c)=2$ at some $c \in(-1,1)$. [Suggestion: Consider $g(x):=f(x)-x^{2}$.]

B-2. Let $\int_{0}^{2 x} f(t) d t=e^{\cos (3 x+1)}+A$. Find $f \in C(\mathbb{R})$ and the constant A.

B-3. Let $f \in C([1,3])$. Compute $\lim _{n \rightarrow \infty} \int_{1}^{3} f(x) e^{-n x} d x$. [Justify your assertions.]

B-4. Show that $f(x):=\sum_{1}^{\infty} \frac{\sin \left(3 n x^{2}\right)}{n^{2}}$ is continuous for $0 \leq x \leq \pi$.

Part C: Traditional Problems (4 problems, 15 points each so 60 points)
$\mathrm{C}-1$. Let $A(t)$ and $B(t)$ be $n \times n$ matrices that are differentiable for $t \in[a, b]$ and let $t_{0} \in(a, b)$. Directly from the definition of the derivative, show that the product $M(t):=A(t) B(t)$ is differentiable at $t=t_{0}$ and obtain the usual formula for $M^{\prime}\left(t_{0}\right)$.

C-2. Let K be a compact set in a complete metric space \mathcal{M} with metric $d(x, y)$. If $p \in \mathcal{M}$ is a point not in K, let $c=\inf _{x \in K} d(p, x)$. Show there is a point $q \in K$ such that $d(p, q)=c$.
$\mathrm{C}-3$. Let $f \in C^{1}([0,2])$. Given any $\epsilon>0$ show there is a polynomial $p(x)$ such that

$$
\max _{x \in[0,2]}|f(x)-p(x)|+\max _{x \in[0,2]}\left|f^{\prime}(x)-p^{\prime}(x)\right|<\epsilon
$$

That is, $\|f-p\|_{C^{1}([0,2])}<\epsilon$.

C-4. Let $f(x)$ and $h(x, y)$ be continuous functions for $x, y \in[0,2]$. Show that if the constant $\lambda>0$ is sufficiently small, the equation

$$
u(x)=f(x)+\lambda \int_{0}^{2} h(x, y) u(y) d y
$$

has a unique solution $u(x) \in C([0,2])$.

Extra Problems The following are some problems that I almost put on the exam - but then it would have been much too long.
Ex-1. Let $0<a_{n} \in \mathbb{R}$ be a sequence with the property that $\frac{a_{n+1}}{a_{n}} \leq c, n=1,2, \ldots$ for some $0<c<1$. Show that $a_{n} \rightarrow 0$.

Ex-2. Show that a compact set in a metric space is bounded.

Ex-3. Let \mathbb{R}^{2} be the points $V=(x, y)$ with the usual Euclidean norm $\|V\|=\sqrt{x^{2}+y^{2}}$. Using that \mathbb{R} is complete with norm $|x|$, prove directly that \mathbb{R}^{2} is complete.

Ex-4. If $\sum_{0}^{\infty} a_{n} z^{n}$ converges at $z=R$ and if $0<r<R$, prove that it converges uniformly in the $\operatorname{disk}\{z \in \mathbb{C}:|z| \leq r\}$.
$\mathrm{Ex}-5$. Let $\varphi_{n}(t)$ be a sequence of smooth real-valued functions with the properties

$$
\text { (a) } \varphi_{n}(t) \geq 0, \quad(b) \varphi_{n}(t)=0 \text { for }|t| \geq 1 / n, \quad(c) \int_{-\infty}^{\infty} \varphi_{n}(t) d t=1
$$

Note: because of (b), this integral is only over $-1 / n \leq t \leq 1 / n$.
Assume $f(x)$ is uniformly continuous for all $x \in \mathbb{R}$ and define

$$
f_{n}(x):=\int_{-\infty}^{\infty} f(x-t) \varphi_{n}(t) d t
$$

Show that $f_{n}(x)$ converges uniformly to $f(x)$ for all $x \in \mathbb{R}$. Note explicitly where you use the uniform continuity of f.
[SUGGESTION: Use $f(x)=f(x)\left(\int_{-\infty}^{\infty} \varphi_{n}(t) d t\right)=\int_{-\infty}^{\infty} f(x) \varphi_{n}(t) d t$].

