
Math 508 Exam 2 Jerry L. Kazdan
December 9, 2010 9:00 – 10:20

Directions This exam has three parts, Part A asks for 3 examples (5 points each, so 15 points).
Part B has 4 shorter problems (8 points each so 32 points). Part C has 4 traditional problems (15
points each so 60 points). Total is 107 points.
Closed book, no calculators or computers– but you may use one 3′′ × 5′′ card with notes on both
sides.

Part A: Examples (3 examples, 5 points each so 15 points). Give an example having the specified
property.

1. A function f ∈ C1([−1, 1]) but is not in C2([−1, 1]).

Solution: f(x) := x|x|

2. A bounded sequence ak in a complete metric space M where ak has no convergent subsequence.

Solution: In `2 the unit vectors e1 := (1, 0, 0, . . .), e2 := (0, 1, 0, . . .), . . . .
Another example: In C([0, 1]) the functions fk(x) := xk , k = 0, 1, 2, . . . [since every subse-
quence converges pointwise to the discontinuous function f(x) := 0, x ∈ [0.1) but f(1) = 1.
Another example: In L2((−π, π)), the functions sin kx√

π
, k = 1, 2, . . . [since they are orthonor-

mal].

3. A sequence of continuous functions fn(x) ∈ C([0, 1]) that converges pointwise to zero but∫ 1
0 fn(x) dx ≥ 1. [A clear sketch is adequate.]

Solution: Let fn(x) ∈ C([0, 1]) be the “tent” function whose graph is straight lines from
(0, 0) to (1/n, n) to (2/n, 0) to (1, 0).

Part B: Short Problems (4 problems, 8 points each so 32 points)

B–1. Let f(x) be a smooth function with the properties: f(−1) = 1, f(0) = 0, and f(1) = 1.
Show that f ′′(c) = 2 at some c ∈ (−1, 1). [Suggestion: Consider g(x) := f(x)− x2 .]

Solution: Let g(x) := f(x) − x2 . Then g(−1) = g(0) = g(1) = 0. By the mean value
theorem there is at least one point point c1 ∈ (−1, 0) where g′(c1) = 0 and c2 ∈ (0, 1) where
g′(c2) = 0. Applying the mean value theorem a third time, this time to g′(x) there is a point
c ∈ (c1, c2) where g′′(c) = 0. But g′′(c) = f ′′(c)− 2.

B–2. Let
∫ 2x

0
f(t) dt = ecos(3x+1) +A . Find f ∈ C(R) and the constant A .

Solution: Let x = 0 to see that A = −ecos 1 . Take the derivative of both sides with respect
to x to find that 2f(2x) = ecos(3x+1)(−3 sin(3x+ 1)) so

f(x) = −3
2

sin[(3x/2) + 1]ecos[(3x/2)+1].



Alternate: First make the substitution w := 2x in the original equation:∫ w

0
f(t) dt = ecos(3w/2+1) +A.

Now let w = 0 to find A and take the derivative of both sides with respect to w to find f(w).

B–3. Let f ∈ C([1, 3]). Compute lim
n→∞

∫ 3

1
f(x)e−nx dx . [Justify your assertions.]

Solution: Since f ∈ C([1, 3]), it is bounded, so say |f(x)| ≤M in [1, 3]. Then∣∣∣∣∫ 3

1
f(x)e−nx dx

∣∣∣∣ ≤M

∫ 3

1
e−nx dx ≤ 2Me−n → 0.

Alternate: Observe that the sequence lim
n→∞

f(x)e−nx = 0 uniformly on the bounded interval

[1, 3] so we can interchange limit and integral.

B–4. Show that f(x) :=
∞∑
1

sin(3nx2)
n2

is continuous for 0 ≤ x ≤ π .

Solution: Since |sin(3nx2)| ≤ 1 and
∑

1/(n2) converges, the series converges uniformly by
the Weierstrass M-Test. Now use that the uniform limit of continuous functions is continuous.

Part C: Traditional Problems (4 problems, 15 points each so 60 points)

C–1. Let A(t) and B(t) be n× n matrices that are differentiable for t ∈ [a, b] and let t0 ∈ (a, b).
Directly from the definition of the derivative, show that the product M(t) := A(t)B(t) is
differentiable at t = t0 and obtain the usual formula for M ′(t0).

Solution: From the definition of the derivative, we need to examine

lim
h→0

M(t0 + h)−M(t0)
h

= lim
h→0

A(t0 + h)B(t0 + h)−A(t0)B(t0)
h

But

A(t0 + h)B(t0 + h)−A(t0)B(t0)
h

=
[A(t0 + h)−A(t0)]B(t0 + h)

h
+
A(t0)[B(t0 + h)−B(t0)]

h
→ A′(t0)B(t0) +A(t0)B′(t0)

Therefore M ′(t0) exist and equals A′(t0)B(t0) +A(t0)B′(t0).

C–2. Let K be a compact set in a complete metric space M with metric d(x, y). If p ∈ M is a
point not in K , let c = infx∈K d(p, x). Show there is a point q ∈ K such that d(p, q) = c .
Thus, q is a point in K that is closest to p ,
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Solution: We use that for a compact set in a metric space, every sequence has a convergent
subsequence. From the definition of c , there is a sequence xn ∈ K such that d(p, xn) → c .
The xn has a subsequence xnj that converges to some q ∈ K . Thus

c = lim d(p, xnj ) = d(p, q).

Here we used that d(x, y) is a continuous function of y (and similarly, x). This follows from
|d(x, y)− d(x, z)| ≤ d(y, z).

The example where K ⊂ R2 is the annulus: {(x, y) ∈ R2 : 1 ≤ x2 + y2 ≤ 4} and p = (0, 0)
is the origin shows that there may be many closest points q ∈ K so using a convergent
subsequence is essential.

C–3. Let f ∈ C1([0, 2]). Given any ε > 0 show there is a polynomial p(x) such that

max
x∈[0,2]

|f(x)− p(x)|+ max
x∈[0,2]

|f ′(x)− p′(x)| < ε (1)

That is, ‖f − p‖C1([0,2]) < ε .

Solution: Idea: first approximate f ′ by a polynomial q(x). Then integrate to appromimate
f(x). [Approximating f first can’t work since although two functions can be fairly close in the

uniform norm, their derivatives may be far apart. Example: f(x) =
sin 1000x

10
and g(x) := 0].

In greater detail, given any ε > 0, by the Weierstrass Approximation Theorem there is a
polynomial q(x) with |f ′(x) − q(x)| < ε/3 for all x ∈ [0, 2]. Let p(x) := f(0) +

∫ x
0 q(t) dt so

p′ = q . Since f(x) = f(0) +
∫ x
0 f

′(t) dt , then

|f(x)− p(x)| =
∣∣∣∣∫ x

0
[f ′(t)− p′(t)] dt

∣∣∣∣
≤

∫ 2

0
|f ′(t)− q(t)| dt ≤ 2ε/3.

Thus (1) is satisfied.

C–4. Let f(x) and h(x, y) be continuous functions for x, y ∈ [0, 2]. Show that if the constant
λ > 0 is sufficiently small, the equation

u(x) = f(x) + λ

∫ 2

0
h(x, y)u(y) dy.

has a unique solution u(x) ∈ C([0, 2]).

Solution: Let M be C([0, 2]) with the uniform norm. This is complete since the uniform
limit of continuous functions is continuous.

Define the map

Tϕ(x) := f(x) + λ

∫ 2

0
h(x, y)ϕ(y) dy.
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Since h(x, y) is assumed continuous for x, y ∈ [0, 2] we see that T : M → M . Thus we
need only show that for small λ the map T is contracting. Because h(x, y) is continuous and
[0, 2]× [0, 2] is Compact, h(x, y) is bounded, say |h(x, y| ≤M for all x, y ∈ [0, 2]. Then

|Tϕ(x)− Tψ(x)| ≤λ
∫ 2

0
|h(x, y)[ϕ(x)− ψ(x)]| dx

≤2λM‖ϕ− ψ‖∞.

Picking λ < 1/(2M) it is clear the contracting condition is satisfied.
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Extra Problems The following are some problems that I almost put on the exam — but then it
would have been much too long.

Ex–1. Let 0 < an ∈ R be a sequence with the property that
an+1

an
≤ c , n = 1, 2, . . . for some

0 < c < 1. Show that an → 0.

Ex–2. Show that a compact set in a metric space is bounded.

Ex–3. Let R2 be the points V = (x, y) with the usual Euclidean norm ‖V ‖ =
√
x2 + y2 . Using

that R is complete with norm |x| , prove directly that R2 is complete.

Ex–4. If
∞∑
0

anz
n converges at z = 1 and if 0 < r < 1, prove that it converges uniformly in the

disk {z ∈ C : |z| ≤ r} .

Ex–5. Let ϕn(t) be a sequence of smooth real-valued functions with the properties

(a) ϕn(t) ≥ 0, (b) ϕn(t) = 0 for |t| ≥ 1/n, (c)
∫ ∞

−∞
ϕn(t) dt = 1.

Note: because of (b), this integral is only over −1/n ≤ t ≤ 1/n .

Assume f(x) is uniformly continuous for all x ∈ R and define

fn(x) :=
∫ ∞

−∞
f(x− t)ϕn(t) dt.

Show that fn(x) converges uniformly to f(x) for all x ∈ R . [Suggestion: Use
f(x) = f(x)

(∫∞
−∞ ϕn(t) dt

)
=

∫∞
−∞ f(x)ϕn(t) dt . Also, note explicitly where you use the

uniform continuity of f ].
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