Math 508 December 9, 2010

DIRECTIONS This exam has three parts, Part A asks for 3 examples (5 points each, so 15 points). Part B has 4 shorter problems (8 points each so 32 points). Part C has 4 traditional problems (15 points each so 60 points). Total is 107 points.

Closed book, no calculators or computers – but you may use one $3'' \times 5''$ card with notes on both sides.

Part A: Examples (3 examples, 5 points each so 15 points). Give an example having the specified property.

- 1. A function $f \in C^1([-1,1])$ but is not in $C^2([-1,1])$. Solution: f(x) := x|x|
- 2. A bounded sequence a_k in a complete metric space \mathcal{M} where a_k has no convergent subsequence.

SOLUTION: In ℓ_2 the unit vectors $e_1 := (1, 0, 0, ...), e_2 := (0, 1, 0, ...),$ Another example: In C([0, 1]) the functions $f_k(x) := x^k, k = 0, 1, 2, ...$ [since every subsequence converges pointwise to the discontinuous function $f(x) := 0, x \in [0.1)$ but f(1) = 1. Another example: In $L_2((-\pi, \pi))$, the functions $\frac{\sin kx}{\sqrt{\pi}}, k = 1, 2, ...$ [since they are orthonormal].

3. A sequence of continuous functions $f_n(x) \in C([0,1])$ that converges pointwise to zero but $\int_0^1 f_n(x) dx \ge 1$. [A clear sketch is adequate.]

SOLUTION: Let $f_n(x) \in C([0,1])$ be the "tent" function whose graph is straight lines from (0,0) to (1/n, n) to (2/n, 0) to (1,0).

Part B: Short Problems (4 problems, 8 points each so 32 points)

B-1. Let f(x) be a smooth function with the properties: f(-1) = 1, f(0) = 0, and f(1) = 1. Show that f''(c) = 2 at some $c \in (-1, 1)$. [Suggestion: Consider $g(x) := f(x) - x^2$.]

SOLUTION: Let $g(x) := f(x) - x^2$. Then g(-1) = g(0) = g(1) = 0. By the mean value theorem there is at least one point point $c_1 \in (-1, 0)$ where $g'(c_1) = 0$ and $c_2 \in (0, 1)$ where $g'(c_2) = 0$. Applying the mean value theorem a third time, this time to g'(x) there is a point $c \in (c_1, c_2)$ where g''(c) = 0. But g''(c) = f''(c) - 2.

B-2. Let
$$\int_0^{2x} f(t) dt = e^{\cos(3x+1)} + A$$
. Find $f \in C(\mathbb{R})$ and the constant A .

SOLUTION: Let x = 0 to see that $A = -e^{\cos 1}$. Take the derivative of both sides with respect to x to find that $2f(2x) = e^{\cos(3x+1)}(-3\sin(3x+1))$ so

$$f(x) = -\frac{3}{2}\sin[(3x/2) + 1]e^{\cos[(3x/2) + 1]}.$$

ALTERNATE: First make the substitution w := 2x in the original equation:

$$\int_0^w f(t) \, dt = e^{\cos(3w/2+1)} + A.$$

Now let w = 0 to find A and take the derivative of both sides with respect to w to find f(w).

B–3. Let $f \in C([1,3])$. Compute $\lim_{n \to \infty} \int_1^3 f(x) e^{-nx} dx$. [Justify your assertions.]

SOLUTION: Since $f \in C([1,3])$, it is bounded, so say $|f(x)| \leq M$ in [1,3]. Then

$$\left| \int_{1}^{3} f(x) e^{-nx} \, dx \right| \le M \int_{1}^{3} e^{-nx} \, dx \le 2M e^{-n} \to 0.$$

ALTERNATE: Observe that the sequence $\lim_{n\to\infty} f(x)e^{-nx} = 0$ uniformly on the bounded interval [1,3] so we can interchange limit and integral.

B-4. Show that
$$f(x) := \sum_{1}^{\infty} \frac{\sin(3nx^2)}{n^2}$$
 is continuous for $0 \le x \le \pi$.

SOLUTION: Since $|\sin(3nx^2)| \leq 1$ and $\sum 1/(n^2)$ converges, the series converges uniformly by the Weierstrass M-Test. Now use that the uniform limit of continuous functions is continuous.

Part C: Traditional Problems (4 problems, 15 points each so 60 points)

C-1. Let A(t) and B(t) be $n \times n$ matrices that are differentiable for $t \in [a, b]$ and let $t_0 \in (a, b)$. Directly from the *definition* of the derivative, show that the product M(t) := A(t)B(t) is differentiable at $t = t_0$ and obtain the usual formula for $M'(t_0)$.

SOLUTION: From the definition of the derivative, we need to examine

$$\lim_{h \to 0} \frac{M(t_0 + h) - M(t_0)}{h} = \lim_{h \to 0} \frac{A(t_0 + h)B(t_0 + h) - A(t_0)B(t_0)}{h}$$

But

$$\frac{A(t_0+h)B(t_0+h) - A(t_0)B(t_0)}{h} = \frac{[A(t_0+h) - A(t_0)]B(t_0+h)}{h} + \frac{A(t_0)[B(t_0+h) - B(t_0)]}{h} \rightarrow A'(t_0)B(t_0) + A(t_0)B'(t_0)$$

Therefore $M'(t_0)$ exist and equals $A'(t_0)B(t_0) + A(t_0)B'(t_0)$.

C-2. Let K be a compact set in a complete metric space \mathcal{M} with metric d(x, y). If $p \in \mathcal{M}$ is a point not in K, let $c = \inf_{x \in K} d(p, x)$. Show there is a point $q \in K$ such that d(p, q) = c. Thus, q is a point in K that is closest to p,

SOLUTION: We use that for a compact set in a metric space, every sequence has a convergent subsequence. From the definition of c, there is a sequence $x_n \in K$ such that $d(p, x_n) \to c$. The x_n has a subsequence x_{n_j} that converges to some $q \in K$. Thus

$$c = \lim d(p, x_{n_i}) = d(p, q).$$

Here we used that d(x, y) is a continuous function of y (and similarly, x). This follows from $|d(x, y) - d(x, z)| \le d(y, z)$.

The example where $K \subset \mathbb{R}^2$ is the annulus: $\{(x, y) \in \mathbb{R}^2 : 1 \leq x^2 + y^2 \leq 4\}$ and p = (0, 0) is the origin shows that there may be many closest points $q \in K$ so using a convergent subsequence is essential.

C-3. Let $f \in C^1([0,2])$. Given any $\epsilon > 0$ show there is a polynomial p(x) such that

$$\max_{x \in [0,2]} |f(x) - p(x)| + \max_{x \in [0,2]} |f'(x) - p'(x)| < \epsilon$$
(1)

That is, $||f - p||_{C^1([0,2])} < \epsilon$.

SOLUTION: Idea: first approximate f' by a polynomial q(x). Then integrate to approximate f(x). [Approximating f first can't work since although two functions can be fairly close in the uniform norm, their derivatives may be far apart. Example: $f(x) = \frac{\sin 1000x}{10}$ and g(x) := 0].

In greater detail, given any $\epsilon > 0$, by the Weierstrass Approximation Theorem there is a polynomial q(x) with $|f'(x) - q(x)| < \epsilon/3$ for all $x \in [0, 2]$. Let $p(x) := f(0) + \int_0^x q(t) dt$ so p' = q. Since $f(x) = f(0) + \int_0^x f'(t) dt$, then

$$|f(x) - p(x)| = \left| \int_0^x [f'(t) - p'(t)] \, dt \right|$$

$$\leq \int_0^2 |f'(t) - q(t)| \, dt \leq 2\epsilon/3$$

Thus (1) is satisfied.

C-4. Let f(x) and h(x, y) be continuous functions for $x, y \in [0, 2]$. Show that if the constant $\lambda > 0$ is sufficiently small, the equation

$$u(x) = f(x) + \lambda \int_0^2 h(x, y) u(y) \, dy$$

has a unique solution $u(x) \in C([0,2])$.

SOLUTION: Let \mathcal{M} be C([0,2]) with the uniform norm. This is complete since the uniform limit of continuous functions is continuous.

Define the map

$$T\varphi(x) := f(x) + \lambda \int_0^2 h(x, y)\varphi(y) \, dy.$$

Since h(x, y) is assumed continuous for $x, y \in [0, 2]$ we see that $T : \mathcal{M} \to \mathcal{M}$. Thus we need only show that for small λ the map T is contracting. Because h(x, y) is continuous and $[0, 2] \times [0, 2]$ is Compact, h(x, y) is bounded, say $|h(x, y)| \leq M$ for all $x, y \in [0, 2]$. Then

$$|T\varphi(x) - T\psi(x)| \leq \lambda \int_0^2 |h(x,y)[\varphi(x) - \psi(x)]| \, dx$$
$$\leq 2\lambda M \|\varphi - \psi\|_{\infty}.$$

Picking $\lambda < 1/(2M)$ it is clear the contracting condition is satisfied.

Extra Problems The following are some problems that I almost put on the exam — but then it would have been much too long.

- Ex-1. Let $0 < a_n \in \mathbb{R}$ be a sequence with the property that $\frac{a_{n+1}}{a_n} \leq c, n = 1, 2, \dots$ for some 0 < c < 1. Show that $a_n \to 0$.
- Ex-2. Show that a compact set in a metric space is bounded.
- Ex-3. Let \mathbb{R}^2 be the points V = (x, y) with the usual Euclidean norm $||V|| = \sqrt{x^2 + y^2}$. Using that \mathbb{R} is complete with norm |x|, prove directly that \mathbb{R}^2 is complete.
- Ex–4. If $\sum_{0}^{\infty} a_n z^n$ converges at z = 1 and if 0 < r < 1, prove that it converges uniformly in the disk $\{z \in \mathbb{C} : |z| \le r\}$.
- Ex-5. Let $\varphi_n(t)$ be a sequence of smooth real-valued functions with the properties

(a)
$$\varphi_n(t) \ge 0$$
, (b) $\varphi_n(t) = 0$ for $|t| \ge 1/n$, (c) $\int_{-\infty}^{\infty} \varphi_n(t) dt = 1$.

Note: because of (b), this integral is only over $-1/n \le t \le 1/n$. Assume f(x) is uniformly continuous for all $x \in \mathbb{R}$ and define

$$f_n(x) := \int_{-\infty}^{\infty} f(x-t)\varphi_n(t) \, dt.$$

Show that $f_n(x)$ converges uniformly to f(x) for all $x \in \mathbb{R}$. [SUGGESTION: Use $f(x) = f(x) \left(\int_{-\infty}^{\infty} \varphi_n(t) dt \right) = \int_{-\infty}^{\infty} f(x) \varphi_n(t) dt$. Also, note *explicitly* where you use the uniform continuity of f].