Directions This exam has three parts, Part A asks for 3 examples (5 points each, so 15 points). Part B has 4 shorter problems (8 points each so 32 points). Part C has 4 traditional problems (15 points each so 60 points). Total is 107 points.
Closed book, no calculators or computers- but you may use one $3^{\prime \prime} \times 5^{\prime \prime}$ card with notes on both sides.

Part A: Examples (3 examples, 5 points each so 15 points). Give an example having the specified property.

1. A function $f \in C^{1}([-1,1])$ but is not in $C^{2}([-1,1])$.

SOLUTION: $f(x):=x|x|$
2. A bounded sequence a_{k} in a complete metric space \mathcal{M} where a_{k} has no convergent subsequence.

Solution: In ℓ_{2} the unit vectors $e_{1}:=(1,0,0, \ldots), e_{2}:=(0,1,0, \ldots), \ldots$
Another example: In $C([0,1])$ the functions $f_{k}(x):=x^{k}, k=0,1,2, \ldots$ [since every subsequence converges pointwise to the discontinuous function $f(x):=0, x \in[0.1)$ but $f(1)=1$. Another example: In $L_{2}((-\pi, \pi))$, the functions $\frac{\sin k x}{\sqrt{\pi}}, k=1,2, \ldots$ [since they are orthonormal].
3. A sequence of continuous functions $f_{n}(x) \in C([0,1])$ that converges pointwise to zero but $\int_{0}^{1} f_{n}(x) d x \geq 1$. [A clear sketch is adequate.]

Solution: Let $f_{n}(x) \in C([0,1])$ be the "tent" function whose graph is straight lines from $(0,0)$ to $(1 / n, n)$ to $(2 / n, 0)$ to $(1,0)$.

Part B: Short Problems (4 problems, 8 points each so 32 points)
$\mathrm{B}-1$. Let $f(x)$ be a smooth function with the properties: $f(-1)=1, f(0)=0$, and $f(1)=1$. Show that $f^{\prime \prime}(c)=2$ at some $c \in(-1,1)$. [Suggestion: Consider $g(x):=f(x)-x^{2}$.]
Solution: Let $g(x):=f(x)-x^{2}$. Then $g(-1)=g(0)=g(1)=0$. By the mean value theorem there is at least one point point $c_{1} \in(-1,0)$ where $g^{\prime}\left(c_{1}\right)=0$ and $c_{2} \in(0,1)$ where $g^{\prime}\left(c_{2}\right)=0$. Applying the mean value theorem a third time, this time to $g^{\prime}(x)$ there is a point $c \in\left(c_{1}, c_{2}\right)$ where $g^{\prime \prime}(c)=0$. But $g^{\prime \prime}(c)=f^{\prime \prime}(c)-2$.

B-2. Let $\int_{0}^{2 x} f(t) d t=e^{\cos (3 x+1)}+A$. Find $f \in C(\mathbb{R})$ and the constant A.
Solution: Let $x=0$ to see that $A=-e^{\cos 1}$. Take the derivative of both sides with respect to x to find that $2 f(2 x)=e^{\cos (3 x+1)}(-3 \sin (3 x+1))$ so

$$
f(x)=-\frac{3}{2} \sin [(3 x / 2)+1] e^{\cos [(3 x / 2)+1]} .
$$

Alternate: First make the substitution $w:=2 x$ in the original equation:

$$
\int_{0}^{w} f(t) d t=e^{\cos (3 w / 2+1)}+A
$$

Now let $w=0$ to find A and take the derivative of both sides with respect to w to find $f(w)$.

B-3. Let $f \in C([1,3])$. Compute $\lim _{n \rightarrow \infty} \int_{1}^{3} f(x) e^{-n x} d x$. [Justify your assertions.]
Solution: Since $f \in C([1,3])$, it is bounded, so say $|f(x)| \leq M$ in $[1,3]$. Then

$$
\left|\int_{1}^{3} f(x) e^{-n x} d x\right| \leq M \int_{1}^{3} e^{-n x} d x \leq 2 M e^{-n} \rightarrow 0
$$

Alternate: Observe that the sequence $\lim _{n \rightarrow \infty} f(x) e^{-n x}=0$ uniformly on the bounded interval $[1,3]$ so we can interchange limit and integral.

B-4. Show that $f(x):=\sum_{1}^{\infty} \frac{\sin \left(3 n x^{2}\right)}{n^{2}}$ is continuous for $0 \leq x \leq \pi$.
Solution: Since $\left|\sin \left(3 n x^{2}\right)\right| \leq 1$ and $\sum 1 /\left(n^{2}\right)$ converges, the series converges uniformly by the Weierstrass M-Test. Now use that the uniform limit of continuous functions is continuous.

Part C: Traditional Problems (4 problems, 15 points each so 60 points)
$\mathrm{C}-1$. Let $A(t)$ and $B(t)$ be $n \times n$ matrices that are differentiable for $t \in[a, b]$ and let $t_{0} \in(a, b)$. Directly from the definition of the derivative, show that the product $M(t):=A(t) B(t)$ is differentiable at $t=t_{0}$ and obtain the usual formula for $M^{\prime}\left(t_{0}\right)$.

Solution: From the definition of the derivative, we need to examine

$$
\lim _{h \rightarrow 0} \frac{M\left(t_{0}+h\right)-M\left(t_{0}\right)}{h}=\lim _{h \rightarrow 0} \frac{A\left(t_{0}+h\right) B\left(t_{0}+h\right)-A\left(t_{0}\right) B\left(t_{0}\right)}{h}
$$

But

$$
\begin{aligned}
\frac{A\left(t_{0}+h\right) B\left(t_{0}+h\right)-A\left(t_{0}\right) B\left(t_{0}\right)}{h} & =\frac{\left[A\left(t_{0}+h\right)-A\left(t_{0}\right)\right] B\left(t_{0}+h\right)}{h}+\frac{A\left(t_{0}\right)\left[B\left(t_{0}+h\right)-B\left(t_{0}\right)\right]}{h} \\
& \rightarrow A^{\prime}\left(t_{0}\right) B\left(t_{0}\right)+A\left(t_{0}\right) B^{\prime}\left(t_{0}\right)
\end{aligned}
$$

Therefore $M^{\prime}\left(t_{0}\right)$ exist and equals $A^{\prime}\left(t_{0}\right) B\left(t_{0}\right)+A\left(t_{0}\right) B^{\prime}\left(t_{0}\right)$.

C-2. Let K be a compact set in a complete metric space \mathcal{M} with metric $d(x, y)$. If $p \in \mathcal{M}$ is a point not in K, let $c=\inf _{x \in K} d(p, x)$. Show there is a point $q \in K$ such that $d(p, q)=c$. Thus, q is a point in K that is closest to p,

Solution: We use that for a compact set in a metric space, every sequence has a convergent subsequence. From the definition of c, there is a sequence $x_{n} \in K$ such that $d\left(p, x_{n}\right) \rightarrow c$. The x_{n} has a subsequence $x_{n_{j}}$ that converges to some $q \in K$. Thus

$$
c=\lim d\left(p, x_{n_{j}}\right)=d(p, q) .
$$

Here we used that $d(x, y)$ is a continuous function of y (and similarly, x). This follows from $|d(x, y)-d(x, z)| \leq d(y, z)$.
The example where $K \subset \mathbb{R}^{2}$ is the annulus: $\left\{(x, y) \in \mathbb{R}^{2}: 1 \leq x^{2}+y^{2} \leq 4\right\}$ and $p=(0,0)$ is the origin shows that there may be many closest points $q \in K$ so using a convergent subsequence is essential.
$\mathrm{C}-3$. Let $f \in C^{1}([0,2])$. Given any $\epsilon>0$ show there is a polynomial $p(x)$ such that

$$
\begin{equation*}
\max _{x \in[0,2]}|f(x)-p(x)|+\max _{x \in[0,2]}\left|f^{\prime}(x)-p^{\prime}(x)\right|<\epsilon \tag{1}
\end{equation*}
$$

That is, $\|f-p\|_{C^{1}([0,2])}<\epsilon$.
Solution: Idea: first approximate f^{\prime} by a polynomial $q(x)$. Then integrate to appromimate $f(x)$. [Approximating f first can't work since although two functions can be fairly close in the uniform norm, their derivatives may be far apart. Example: $f(x)=\frac{\sin 1000 x}{10}$ and $\left.g(x):=0\right]$.
In greater detail, given any $\epsilon>0$, by the Weierstrass Approximation Theorem there is a polynomial $q(x)$ with $\left|f^{\prime}(x)-q(x)\right|<\epsilon / 3$ for all $x \in[0,2]$. Let $p(x):=f(0)+\int_{0}^{x} q(t) d t$ so $p^{\prime}=q$. Since $f(x)=f(0)+\int_{0}^{x} f^{\prime}(t) d t$, then

$$
\begin{aligned}
|f(x)-p(x)| & =\left|\int_{0}^{x}\left[f^{\prime}(t)-p^{\prime}(t)\right] d t\right| \\
& \leq \int_{0}^{2}\left|f^{\prime}(t)-q(t)\right| d t \leq 2 \epsilon / 3 .
\end{aligned}
$$

Thus (1) is satisfied.

C-4. Let $f(x)$ and $h(x, y)$ be continuous functions for $x, y \in[0,2]$. Show that if the constant $\lambda>0$ is sufficiently small, the equation

$$
u(x)=f(x)+\lambda \int_{0}^{2} h(x, y) u(y) d y
$$

has a unique solution $u(x) \in C([0,2])$.
Solution: Let \mathcal{M} be $C([0,2])$ with the uniform norm. This is complete since the uniform limit of continuous functions is continuous.

Define the map

$$
T \varphi(x):=f(x)+\lambda \int_{0}^{2} h(x, y) \varphi(y) d y .
$$

Since $h(x, y)$ is assumed continuous for $x, y \in[0,2]$ we see that $T: \mathcal{M} \rightarrow \mathcal{M}$. Thus we need only show that for small λ the map T is contracting. Because $h(x, y)$ is continuous and $[0,2] \times[0,2]$ is Compact, $h(x, y)$ is bounded, say $\mid h(x, y \mid \leq M$ for all $x, y \in[0,2]$. Then

$$
\begin{aligned}
|T \varphi(x)-T \psi(x)| & \leq \lambda \int_{0}^{2}|h(x, y)[\varphi(x)-\psi(x)]| d x \\
& \leq 2 \lambda M\|\varphi-\psi\|_{\infty} .
\end{aligned}
$$

Picking $\lambda<1 /(2 M)$ it is clear the contracting condition is satisfied.

Extra Problems The following are some problems that I almost put on the exam - but then it would have been much too long.

Ex-1. Let $0<a_{n} \in \mathbb{R}$ be a sequence with the property that $\frac{a_{n+1}}{a_{n}} \leq c, n=1,2, \ldots$ for some $0<c<1$. Show that $a_{n} \rightarrow 0$.

Ex-2. Show that a compact set in a metric space is bounded.

Ex-3. Let \mathbb{R}^{2} be the points $V=(x, y)$ with the usual Euclidean norm $\|V\|=\sqrt{x^{2}+y^{2}}$. Using that \mathbb{R} is complete with norm $|x|$, prove directly that \mathbb{R}^{2} is complete.

Ex-4. If $\sum_{0}^{\infty} a_{n} z^{n}$ converges at $z=1$ and if $0<r<1$, prove that it converges uniformly in the disk $\{z \in \mathbb{C}:|z| \leq r\}$.

Ex- 5 . Let $\varphi_{n}(t)$ be a sequence of smooth real-valued functions with the properties
(a) $\varphi_{n}(t) \geq 0$,
(b) $\varphi_{n}(t)=0$ for $|t| \geq 1 / n$,
(c) $\int_{-\infty}^{\infty} \varphi_{n}(t) d t=1$.

Note: because of (b), this integral is only over $-1 / n \leq t \leq 1 / n$.
Assume $f(x)$ is uniformly continuous for all $x \in \mathbb{R}$ and define

$$
f_{n}(x):=\int_{-\infty}^{\infty} f(x-t) \varphi_{n}(t) d t .
$$

Show that $f_{n}(x)$ converges uniformly to $f(x)$ for all $x \in \mathbb{R}$. [Suggestion: Use $f(x)=f(x)\left(\int_{-\infty}^{\infty} \varphi_{n}(t) d t\right)=\int_{-\infty}^{\infty} f(x) \varphi_{n}(t) d t$. Also, note explicitly where you use the uniform continuity of $f]$.

