
Convolution

Let f (x) and g(x) be continuous real-valued functions forx∈R

and assume thatf or g is zero outside some bounded set (this
assumption can be relaxed a bit). Define theconvolution

( f ∗g)(x) :=
Z ∞

−∞
f (x− y)g(y)dy (1)

One preliminary useful observation is

f ∗g = g∗ f . (2)

To prove this make the change of variablet = x− y in the inte-
gral (1).

Remark 1 Note that ifg is zero outside of the interval[a,b],,
then( f ∗g)(x) =

R b
a f (x−y)g(y)dy, so only the values off on

the interval[x− b,x− a] are used. Thus ifx ∈ [c,d], then the
convolution only involves the values off on [c−b, d −a].
Remark 2 Similarly, if f is zero outside of the interval[−1

2,
1
2]

andx ∈ [c, d], then the convolution only involves the values of
g on the interval[c− 1

2, d + 1
2].

SMOOTHNESS OF f ∗g.

Theorem 1 If f ∈ C1(R) then f ∗ g ∈ C1(R). Better yet, if
f ∈Ck(R) and g ∈Cℓ(R), then f ∗g ∈Ck+ℓ(R).

PROOF This is clearer if we writeh(x) := ( f ∗g)(x). Then

h(x)−h(x0)

x− x0
=

Z ∞

−∞

f (x− y)− f (x0− y)
x− x0

g(x)dx. (3)
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We will be done if we can show that[ f (x−y)− f (x0−y)]/(x−
x0) converges uniformly tof ′(x0− y). To do this we use the
integral form of the mean value theorem:

f (x− y)− f (x0− y) =
Z 1

0

d f (x0− y+ t(x− x0))

dt
dt

=

[

Z 1

0
f ′(x0− y+ t(x− x0))dt

]

(x− x0).

Then

f (x− y)− f (x0− y)
x− x0

− f ′(x0−y)=
Z 1

0
[ f ′(x0−y+t(x−x0))− f ′(x0−y)]dt

(4)
Since f ′ is assumed continuous and is zero outside of a bounded
set, it is uniformly continuous. Thus, given anyε > 0 there is
a δ > 0 so that if|x− x0| < δ then

| f ′(z+ t(x− x0))− f ′(z)| < ε

for all values ofz. In our casez = x0− y. Thus the left side of
(4) tends to zero uniformly for all choices ofx0 andy. Conse-
quently,h ∈C1(R).

Repeating this we conclude that iff ∈Ck thenh ∈Ck . Because
of (2) f (k)∗g = g∗ f (k) , so we can repeat this reasoning to show
that g ∗ f (k) ∈ Cℓ . Thus f ∗ g ∈ Ck+ℓ . Note that althoughg
might not be zero outside a bounded set, becausef is zero
outside a bounded set, the integration ing ∗ f (k) is only over
a bounded set – in which the derivatives ofg are uniformly
continuous.
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APPROXIMATE IDENTITIES
Let ϕn(t) be a sequence of smooth real-valued functions with
the properties

(a) ϕn(t)≥0, (b) ϕn(t)= 0 for |t| ≥1/n, (c)
Z ∞

−∞
ϕn(t)dt = 1.

(5)
Note: because of (b), this integral is only over−1/n ≤ t ≤ 1/n.
Assume f (x) is uniformly continuous for allx ∈ R and zero
outside a bounded set. Define

fn(x) := ( f ∗ϕn)(x) =
Z ∞

−∞
f (x− t)ϕn(t)dt. (6)

Theorem 2 fn(x) ∈C∞ converges uniformly to f (x) for all x ∈
R. Thus, on a compact set any continuous function can be ap-
proximated arbitrarily closely in the uniform norm by a smooth
function.

PROOF The smoothness of the approximationsfn is an im-
mediate consequence of Theorem 1.
Since f (x) = f (x)

(
R ∞
−∞ ϕn(t)dt

)

=
R ∞
−∞ f (x)ϕn(t)dt ,

fn(x)− f (x) =
Z

|t|≤1/n
[ f (x− t)− f (x)]ϕn(t)dt. (7)

Since f is uniformly continuous, given anyε > 0 there is a
δ > 0 such that if|t| < δ then| f (x− t)− f (x)| < ε for all x. If
1/n < δ, then by (5c)

| fn(x)− f (x)| < ε
Z

|t|≤1/n
ϕn(t)dt = ε. (8)
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Since the right side is independent ofx this shows that in the
uniform norm‖ fn− f‖∞ < ε.

Since the operatorsTn( f ) := f ∗ ϕn → f , so in this senseTn

converges to the identity operatorI , we sometime call theTn

(or theϕn) approximate identities.

EXAMPLE Assumef (x) is continuous on the interval[a,b].
Then

R b
a f (x)sinλxdx → 0.

PROOF: If f ∈ C
1([a,b]) this is easy to show by an integra-

tion by parts, using| f ′(x)| ≤ M for some constantM .
If f is only continuous, use Theorem 2 to find a smoothg(x)
with ‖ f −g‖∞ < ε on [a,b]. Then
∣

∣

∣

∣

Z b

a
f (x)sinλxdx

∣

∣

∣

∣

≤
∣

∣

∣

∣

Z b

a
[ f (x)−g(x)]sinλxdx

∣

∣

∣

∣

+

∣

∣

∣

∣

Z b

a
g(x)sinλxdx

∣

∣

∣

∣

.

Since‖ f −g‖∞ < ε, the first term on the right is small. Because
g is smooth, the second term goes to zero asλ → ∞.

In many applications the condition (5b) is too restrictive.

Theorem 3 Theorem 1 is valid if you replace (5b) with:

For every δ > 0, lim
n→∞

Z

|t|>δ
ϕn(t)dt = 0. (5b’)

PROOF Replace (7) by

fn(x)− f (x) =

Z

|t|≤δ
[ f (x− t)− f (x)]ϕn(t)dt +

Z

|t|>δ
[ f (x− t)− f (x)]ϕn(t)dt

= J1+ J2.

4



Given ε > 0, pick δ as was done above. Then

|J1| ≤ ε
Z

|t|≤δ
ϕn(t)dt ≤ ε.

To estimateJ2, say| f (x| ≤M for all x. Then by our assumption
on theϕn ,

|J2| ≤ 2M
Z

|t|>δ
ϕn(t)dt → 0.

This proves that‖ fn− f‖∞ → 0.

Weierstrass used essentially this argument to prove his Approx-
imation Theorem (see below) with

u(x, t) :=
1√
4πt

Z

R

e−
(x−y)2

4t f (y)dy,

He was thinking oft = 1/n → 0. Then lim
t→0

u(x, t)→ f (x). This

classical formula was well-known sinceu(x, t) is the solution
of theheat equation ut = uxx for x ∈ R, t > 0 with initial tem-
peratureu(x,0) = f (x).

We’ll use this idea but with a different integrand to prove

Theorem 4 (WEIERSTRASSAPPROXIMATION THEOREM) Let
f be a continuous function. Then on any compact set it can be
approximated uniformly by a polynomial.

PROOF We prove this wheref is continuous on a compact
set[a′, b′ ] in R. The same proof works for a compact set inR

n .

As a preliminary step, extendf as a continuous function to
a slightly larger interval[a, b] so that this extended function
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satisfies f (a) = f (b) = 0 (for the intervala ≤ x ≤ a′ use a
straight line between the points(a,0) and (a′, f (a′)), with a
similar extension at the right end,x = b′). We can now extendf
as a continuous function to all ofR by letting f (x) = 0 outside
of [a,b]. By scaling thex−axis, we may further assume that
f (x) = 0 for |x| ≥ 1/2.

Our approximations are

fn(x) := f ∗ϕn(x) =
Z ∞

−∞
f (x− t)ϕn(t)dt. (9)

Because for us (see below)ϕn(x) = 0 for |x| ≥ 1 this integral
will be only over the interval|x| ≤ 1.
If in (9) the functionsϕn are polynomials, then the approxima-
tions f ∗ϕn are also polynomials. However, polynomials will
never satisfy the restrictions required of theϕn . Our ϕn(x),
defined below, will be polynomials for|x| ≤ 1 and zero for
|x| ≥ 1. As we observed in the Remark 2 after equation (2),
since our f (x) = 0 for |x| ≥ 1/2, if x ∈ [c,d], then the con-
volution fn(x) = f ∗ϕn will only use the values ofϕn(x) for
x ∈ c− 1

2, d + 1
2]. In particular, if x ∈ [−1

2,
1
2], then the con-

volution fn(x) = f ∗ϕn will only use the values ofϕn(x) for
x ∈ [−1, 1] – which is exactly whereϕn is a polynomial. Note
that if x is in a larger interval, thefn will converge to f – but
the fn will not be polynomials.

Define the functionsϕn(x) as

ϕn(x) =

{

(1−x2)n

cn
if |x| ≤ 1

0 if |x| > 1
, (10)
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where

cn =

Z 1

−1
(1− x2)n dx (11)

was chosen so thatϕn satisfies the condition (5c). We will ver-
ify the modified property (5b’) of Theorem 3 by showing that
for anyδ > 0 in the region|x|> δ the functionsϕn(x) converge
uniformly to zero.

To show this we estimate the constantscn in equation (11). Af-
ter the change of variablet = x2

cn = 2
Z 1

0
(1− x2)n dx =

Z 1

0
(1− t)n dt√

t
. (12)

Since forn ≥ 2 the second derivative of(1− t)n is positive for
all 0 ≤ t ≤ 1, it is convex and thus lies above its tangent line
at t = 0. Thus(1− t)n ≥ 1− nt for 0≤ t ≤ 1. Consequently,
if 0 ≤ nt ≤ 1/2 we find 1− nt ≥ 1/2 so (1− t)n ≥ 1/2. This
estimate on the interval 0≤ t ≤ 1

2n therefore gives the inequality

cn ≥
Z 1

2n

0
(1− t)n dt√

t
≥ 1

2

Z 1
2n

0

dt√
t
=

1√
2n

. (13)

Consequently, if 1≥ |x| > δ, then from the definition (10)

0≤ ϕn(x) =
(1− x2)n

cn
≤
√

2n(1− x2)n ≤
√

2n(1−δ2)n.

This has the form
√

2nbn where 0< b < 1. Thus

For everyδ > 0, lim
n→∞

Z

|x|>δ
ϕn(x)dx = 0.
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Thus we have verified the assumptions of Theorem 3, so our
approximationsfn(x), which are polynomials for|x| ≤ 1/2,
converge uniformly tof (x).

EXAMPLE In the function spaceL2([0,1]) the norm comes
from an inner product

〈 f , g〉 :=
Z 1

0
f (x)g(x)dx so ‖ f‖2 =

√

〈 f , f 〉.

We say f andg areorthogonal if 〈 f , g〉 = 0. Assume that the
continuous functionf is orthogonal to 1,x, x2, . . ., so

Z 1

0
f (x)xk dx = 0, k = 0,1,2, . . . .

We claim the only possibility is thatf (x) ≡ 0 for all x ∈ [0,1].
In brief, this is becausef is orthogonal to all polynomialsp,
but by the Weierstrass approximation theorem, polynomials are
dense inL2([0,1]) so f is essentially orthogonal to itself. Thus
f ≡ 0. In greater detail, find a polynomialp so that‖ f − p‖∞ <

ε in [0,1]. Then〈 f , p〉 = 0 so by the Schwarz inequality

‖ f‖2
2 = 〈 f , f − p〉+ 〈 f , p〉 ≤ ‖ f‖2‖ f − p‖2 ≤ ε‖ f‖2.

Then‖ f‖2 ≤ ε for any ε > 0. This gives a contradiction.
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