Convolution

Let f(x) and g(x) be continuous real-valued functionsxar R
and assume thdt or g is zero outside some bounded set (this
assumption can be relaxed a bit). Define ¢bhevolution

( + g)( / f(x—y)g(y) dy (1)
One preliminary useful observation is
fxg=gxf. (2)

To prove this make the change of variable x—y in the inte-
gral (1).

Remark 1 Note that ifg is zero outside of the interva, by,,
then(f xg)(x) = f;’ f(x—y)g(y)dy, so only the values of on
the interval[x — b,x — @] are used. Thus ik € [c,d], then the
convolution only involves the values dfon [c—b,d —a].
Remark 2 Similarly, if f is zero outside of the intervét-3, ]
andx € [c, d], then the convolution only involves the values of
g on the intervalc— 1, d + 3].

SMOOTHNESS OFf x(.

Theorem 1 If f € C}Y(R) then f xg c C}R). Better yet, if
f € CX(R) and g € C*(R), then f xg € CK*(R).

PROOF This is clearer if we writen(x) := (f xg)(X). Then

h(x))( - :sxO) _ /‘: f<X_y))(:;fX°_y)g(x)dx. (3)




We will be done if we can show that (x—y) — f (X0 —V)]/(X—
Xo) converges uniformly tof’(xg —y). To do this we use the
integral form of the mean value theorem:

f(X—y)— f<XO_y) :/Oldf(Xo—y(—;:t(X—Xo)) dt

— [/01 f’(xo—y+t(X—Xo))dt] (X—Xo).

Then

f(x—y)—f(x—Y)
X—Xo

1
~F00=y) = [ [F(o—y-+t(x—0)) — F'(xo—y)]
(4)
Sincef’ isassumed continuous and is zero outside of a bounded
set, it is uniformly continuous. Thus, given aay> O there is
ad > 0 so that if[x— Xp| < & then

1f'(z+t(x—Xg)) — f'(2)| < €

for all values ofz. In our casez = Xp — Y. Thus the left side of
(4) tends to zero uniformly for all choices & andy. Conse-
quently,h € C1{(R).

Repeating this we conclude thatfifc CX thenh € C*. Because

of (2) fK«xg=gx f, sowe can repeat this reasoning to show
that g+ f® € C* . Thus f xg e C**. Note that althougly
might not be zero outside a bounded set, because zero
outside a bounded set, the integrationgin f is only over

a bounded set — in which the derivatives gpfare uniformly
continuous.



APPROXIMATE IDENTITIES
Let ¢n(t) be a sequence of smooth real-valued functions with
the properties

@00)=0,  (B)oat)=0 for |=1/n,  (©) [ Gn(D)dt=1
(5)

Note: because of (b), this integral is only ovet/n <t <1/n.

Assumef(x) is uniformly continuous for alk € R and zero

outside a bounded set. Define

f0(X) = (%) (X) = /_Z Fx—t)dat)dt.  (6)

Theorem 2 f,(x) € C* converges uniformly to f(x) for all x €
R. Thus, on a compact set any continuous function can be ap-
proximated arbitrarily closely in the uniform norm by a smooth
function.

PROOF The smoothness of the approximatiofysis an im-
mediate consequence of Theorem 1.

Since f(x) = f(x) (/5. dn(t)dt) = [, F(X)Pn(t)dt ,
W= 100 = [ | [Fx-)—fadt. ()

Since f is uniformly continuous, given ang > O there is a
6 > 0 such that ifit| < o then|f(x—t) — f(x)| < € for all x. If
1/n < &, then by (5c)

a0~ 100l <& [ dult)ct—e. (8)

it|<1/n
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Since the right side is independentthis shows that in the
uniform norm|| f, — f|. < €.

Since the operator$,(f) := f x ¢, — f, so in this sensd,
converges to the identity operatby we sometime call thd,
(or the ¢,,) approximate identities.

EXAMPLE Assumef(x) is continuous on the intervaa, b).
Then [P f (x) sinAxdx — O.

PROOFE If f € CY([a,b]) this is easy to show by an integra-
tion by parts, usingf’(x)| <M for some constaril.

If f is only continuous, use Theorem 2 to find a smog(tk)
with || f —g||» < € on [a,b]. Then

b b b
/ f(x) sinAxdx| < / [f(X) —g(x)] sinAxdx| + / g(x) sinAxdx| .

Sincel| f —g||» < €, the first term on the right is small. Because
g is smooth, the second term goes to zera as .

In many applications the condition (5b) is too restrictive.

Theorem 3 Theorem 1 isvalid if you replace (5b) with:

For every 0 >0, Iim dn(t)dt =0. (5b’)

N—c Jit|>o

PROOF Replace (7) by

fn(x)—f(x):/‘tm[f(x t)—f()¢ntdt+/ (F(X—1t) — £()]dn(t) dl

t|>d
=1+ .



Giveng > 0, pick d as was done above. Then
1| < s/ dn(t)dt < €.
t|<3

To estimatel,, say|f (x| <M for all x. Then by our assumption
on thed,,

Bl <2M [ dn(t)dt — O.
t|>d

This proves thaf| f, — f||.. — O.

Weierstrass used essentially this argument to prove his Approx-
imation Theorem (see below) with

Vart 1 / e "4 1(y)dy
4t Jr 7
He was thinking ot =1/n— 0. Thentlirgu(x,t) — f(X). This

classical formula was well-known sinagx,t) is the solution
of the heat equation u; = Uy for x € R, t > 0 with initial tem-
peratureu(x,0) = f(x).

u(x,t) :=

We'll use this idea but with a different integrand to prove

Theorem 4 (WEIERSTRASSAPPROXIMATION THEOREM) Let
f be a continuous function. Then on any compact set it can be
approximated uniformly by a polynomial.

PROOF We prove this wherd is continuous on a compact
set[d, b']in R. The same proof works for a compact seRh

As a preliminary step, extendl as a continuous function to
a slightly larger intervala, b] so that this extended function
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satisfiesf(a) = f(b) = 0 (for the intervala < x < & use a
straight line between the point®,0) and (&, f(&')), with a
similar extension at the right end=b’). We can now extend

as a continuous function to all & by letting f (x) = 0 outside
of [a,b]. By scaling thex—axis, we may further assume that
f(x) =0 for x| > 1/2.

Our approximations are

Fa(X) 1= f % (X /f X—t)d 9)

Because for us (see below),(x) = 0 for |x| > 1 this integral
will be only over the intervalx| < 1.
If in (9) the functionsp, are polynomials, then the approxima-
tions f x ¢, are also polynomials. However, polynomials will
never satisfy the restrictions required of thg. Our ¢n(X),
defined below, will be polynomials fojx| < 1 and zero for
x| > 1. As we observed in the Remark 2 after equation (2),
since ourf(x) =0 for |x| > 1/2, if x € [c,d], then the con-
volution fn(x) = f x ¢, will only use the values ob,(x) for
x € c—3,d+1]. In particular, ifx € [-1, 1], then the con-
volution f,(x) = f x ¢, will only use the values ob,(x) for

€ [—1, 1] — which is exactly wher, is a polynomial. Note
that if x is in a larger interval, thd, will converge tof — but
the f,, will not be polynomials.

Define the function®,(x) as

A" i 1x < 1
X) = Cn - : 10
Ol {o if |x| > 1 (10)



where .
o :/ (1—x*)"dx (11)
—1

was chosen so thdt, satisfies the condition (5c¢). We will ver-
ify the modified property (5b’) of Theorem 3 by showing that
for anyd > 0 in the regionx| > o the functionsp,(x) converge
uniformly to zero.

To show this we estimate the constagisn equation (11). Af-
ter the change of variable= x°

1 0 B 1 ndt
cnzz/o (1) olx_/O 10" (12)

Since forn > 2 the second derivative @fL. —t)" is positive for

all 0 <t <1, itis convex and thus lies above its tangent line
att =0. Thus(1-t)">1—nt for 0<t < 1. Consequently,
if0<nt<1/2wefind1l-nt>1/2so0(1-t)">1/2. This
estimate on the interval 9t < 2—1n therefore gives the inequality

1 1
7 dt 1 /2 dt 1
Ch > 1-t)"— > = = : 13
2] g2 i
Consequently, if > |x| > &, then from the definition (10)
__y2\n
0<on(x) = X - /a1 @) < van(1— &)

Cn

This has the form/2nb"” where 0< b < 1. Thus

For everyd >0, lim dn(X)dx = 0.



Thus we have verified the assumptions of Theorem 3, so our
approximationsf,(x), which are polynomials forx| < 1/2,
converge uniformly tof (x).

EXAMPLE In the function spacé,([0,1]) the norm comes
from an inner product

<f,g>::/01f(x)@dx so || f|lo= /(F, F).

We sayf andg areorthogonal if (f, g) = 0. Assume that the
continuous functiorf is orthogonal to 1x, X2, ..., SO

1
/ f(x)x¥dx=0, k=0,1,2,....
0

We claim the only possibility is that(x) = O for all x € [0, 1].

In brief, this is becausé is orthogonal to all polynomialg,

but by the Weierstrass approximation theorem, polynomials are
dense inL,([0,1]) so f is essentially orthogonal to itself. Thus

f =0. In greater detail, find a polynomialso that|| f — p|| <

€ in [0,1]. Then(f, p) = 0 so by the Schwarz inequality

If12=(f, f—p)+(f, p) < [If[l2lI f — pll < ] f]2.

Then|| f||» < € for anye > 0. This gives a contradiction.



