Problem Set 1
DUE: Thurs. Sept. 16, 2010. Late papers will be accepted until 1:00 PM Friday.

1. Let \(x_0 = 1 \) and define \(x_k := 3x_{k-1} + 4, \ k = 1, 2, \ldots \) Show that \(x_k < 4 \) and that the \(x_k \) are increasing.

2. Show that \(1 + \frac{1}{2!} + \frac{1}{3!} + \cdots + \frac{1}{k!} < 3 \).

3. Let \(A := (a_{ij}) \) be a \(n \times n \) matrix of complex numbers with \(|a_{ij}| \leq M \) and let \(a_{ij}^{(k)} \) be the elements of \(A^k, \ k = 1, 2, \ldots \). Find an estimate for \(|a_{ij}^{(k)}| \) in terms of \(k, n, \) and \(M \).

4. a) Let \(z, w, v \in \mathbb{C} \) and define \(d(z, w) := \frac{|z - w|}{1 + |z - w|} \). Show that
 \[
 d(z, v) \leq d(z, w) + d(w, v)
 \] [triangle inequality].

 b) Let \(S \) be an arbitrary set with \(p, q, r \in S \). Say there is a function \(g : S \times S \to \mathbb{R} \) that satisfies the triangle inequality
 \[
 g(p, r) \leq g(p, q) + g(q, r).
 \]
 Define \(d(p, q) := \frac{g(p, q)}{1 + g(p, q)} \). Show that this function \(d(p, q) \) also satisfies the triangle inequality.

5. Suppose \(a \in \mathbb{R}^k, \ b \in \mathbb{R}^k, \) and \(x \in \mathbb{R}^k \). Find all \(c \in \mathbb{R}^k \) and \(r > 0 \) (depending on \(a \) and \(b \)) such that \(|x - a| = 2|x - b| \) is satisfied if and only if \(|x - c| = r \).

 As an alternate, you may prefer the following generalization. For real \(\lambda > 0, \lambda \neq 1 \), consider the points \(x \in \mathbb{R}^k \) that satisfy
 \[
 |x - a| = \lambda|x - b|.
 \]
 Show that these points lie on a sphere. Part of this is to find the center and radius of this sphere in terms of \(a, b \) and \(\lambda \). What if \(\lambda = 1 \)?

[Last revised: September 18, 2010]