Relative Topology and Connectedness

Let $S \subset \mathbb{R}^n$. and $p \in S$.

A neighborhood of *p* relative to *S* is a set $T \subset S$ that contains $B(p,r) \cap S$ for some r > 0.

 $V \subset S$ is *open* relative to *S* if $V = S \cap U$ where *U* is an open set in \mathbb{R}^n . The following are equivalent:

- F is closed relative to S.
- $F = S \cap K$, where K is closed in \mathbb{R}^n
- If x_j is a sequence of points in F that converge to a point $x \in S$, then $x \in F$.
- The complement of F relative to S, S F, is open relative to S.

A set *S* is **disconnected** if there are two *disjoint* non-empty sets S_1 and S_2 such that $S = S_1 \cup S_2$ and both S_1 and S_2 are closed relative to *S*. The only connected sets in \mathbb{R} are intervals (possibly infinite):

a < x < b, $a \le x \le b$, $a \le x < b$, $a < x \le b$

A function f is **continuous at a point** $p \in S$ if for every neighborhood V of f(p), then the inverse image $f^{-1}(V)$ is a neighborhood of p relative to S.

In brief, if the inverse image of every open set is open.