
Math 508 Exam 1 Jerry Kazdan
October 14, 2014 9:00 – 10:20

Directions This exam has three parts. Part A asks for 8 examples (3 points each, so 24
points), Part B has 4 shorter problems, (8 points each so total 32 points) while Part C had
3 problems (15 points each, so total is 45 points). Maximum total score is thus 101 points.
Closed book, no calculators or computers– but you may use one 3′′ × 5′′ card with notes on
both sides.

Remember to silence your cellphone before the exam and keep it out of sight for the duration
of the test period. This exam begins promptly at 9:00 and ends at 10:20pm; anyone who
continues working after time is called may be denied the right to submit his or her exam
or may be subject to other grading penalties. Please indicate what work you wish to be
graded and what is scratch. Clarity and neatness count.

Part A: For each of the following give an example of a subset with the specified properties.
[3 points each, total 24 points]

A–1. A closed subset of R
2 that is not compact,

Solution: Many many examples. i). All of R2, ii). {(x, y) ∈ R
2 : y = 0}

iii). {(x, y) ∈ R
2 : 1 ≤ y ≤ 7} iv). {(x, y) ∈ R

2 : 1 ≤ x + y ≤ 7}
v). Any closed set in R

2 that is not bounded.

A–2. An open subset of R
2 that is disconnected,

Solution: {(x, y) ∈ R
2 : x < 0 or x > 0}

A–3. Bounded set in R
2 with exactly two limit points.

Solution: {(xn, 0) ∈ R
2 : xn = (−1)n + 1

n}. The limit points are (±1, 0).

A–4. An open cover of {x ∈ R : 0 < x ≤ 1} that has no finite sub-cover.

Solution: Un = {x ∈ R : 1

n < x < 2, n = 1, 2, . . .}

A–5. A metric space X having some bounded infinite sequence with no subsequence con-
verging to a point in X.

Solution: i). The set {1, 1

2
, 1

3
, . . . , 1

n , . . .}.
ii). The set X of rational numbers in {0 ≤ x <

√
2} where the sequence is rational

numbers converging to
√

2 (note
√

2 is not in this set).

A–6. A metric space that is not complete.

Solution: i). The rational numbers in R.
ii). Any subset of R that is not closed.
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A–7. A series of complex numbers
∑

∞

1
ak where the corresponding sequence of partial sums

Sn =
∑n

1
ak is bounded but the series diverges.

Solution: The series
∑

∞

n=0
(−1)n, so ak = (−1)k.

A–8. A closed and bounded set E in a complete metric space X with E not compact.

Solution: This is the only of these example that is not really elementary. Let ℓ2 be
the set of all real infinite sequences X = (x1, x2, x3, . . .) with

∑

∞

n=1
x2

j < ∞ and let
e1 = (1, 0, 0, . . .), e2 = (0, 1, 0, 0, . . .), e3 = (0, 0, 1, 0, 0, . . .), e4 = . . . be the standard
unit vectors.

Then the set E = {e1, e2, e3, . . . , } is closed and bounded but not compact since |ei −
ej | =

√
2 so there can’t be a convergent subsequence.

Alternately, E is covered by the open balls Bj centered at ej and radius 1/2, j =
1, 2, 3, . . .. This open cover has no finite sub-cover.

Part B Four shorter problems, 8 points each (so 32 points total).

B–1. Let Ak and Bk, k = 1, 2, 3, . . . be sequences of n×n matrices. If Ak → A and Bk → B,
prove (using ǫ and N) that AkBk → AB.

Solution: This is identical to the case where Ak and Bk are real numbers – except
that for matrices one should not presume that AB = BA – since it is usually false.

We use the triangle inequality and the properties of the norm we defined on matrices.
In articular, |AB| ≤ |A||B|. Then

|AkBb − AB| =|(Ak − A)Bk + A(Bk − B)|
≤|(Ak − A)Bk| + |A(Bk − B)|
≤|Ak − A||Bk| + |A||Bk − B|.

Since Bk → B, the sequence Bk is bounded, that is, there is a real number c > 0 such
that |Bk| ≤ c for all k.

Also, given any ǫ1 > 0 and ǫ2 > 0 there are positive integers N1 and N2 so that if n > N1

then |An − A| < ǫ1 while if n > N2 then |Bn − B| < ǫ2. Thus, if N ≥ max{N1, N2}
then

|AnBn − AB| ≤ ǫ1c + |A|ǫ2.
Since we cand choose any ǫ1 and ǫ2, pick ǫ1 < ǫ/(2c) and, if A 6= 0, pick ǫ2 < ǫ/(2|A|)
(if A = 0 we don’t need the ǫ2 term). This gives the desired

|AnBn − AB| < ǫ
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The computation is slightly shorter if one makes the preliminary substitution Pn :=
An − A → 0, and Qn := Bn − B → 0. Then

AnBn − AB = PnQn + PnB + AQn

B–2. Show that a compact set K in a metric space is bounded.

Solution: Let p be a point in the space and let Bk, k = 1, 2, 3, . . . be the open balls
centered at p with radius k. These cover the whole metric space, in particular they
cover the compact set. Since the set is compact, a finite subset of these balls covers K.
Then K is in the largest of these balls.

[Instead of covering by balls, one can cover by any bounded open sets. – but it is simplest
to use balls.]

B–3. Find the supremum and infimum of the set B defined below. Then find the closure of
B.

B :=

{

n2 + 2

n2 + 1
: n = 0, 1, 2, . . .

}

.

Please justify your assertions.

Solution: Since xn :=
n2 + 2

n2 + 1
= 1 +

1

n2 + 1
, the sequence {xn}is clearly decreasing.

It’s supremum (and maximum) is clearly 2 (let n = 0) while its infimum is 1 (let
n → ∞). It has no minimum.

The closure of this set is B ∪ {1} (it is not the interval {1 ≤ x ≤ 2}).

B–4. Let Kj , j = 1, 2, . . . be compact sets in a metric space. Give a proof or counterexample
for each of the following assertions.

a) K1 ∩ K2 is compact.

Solution: Since K1 and K2 are compact, they are closed, so their intersection
is also closed. This intersection is a closed subset of the compact set K1 and hence
is compact.

As done in the next part, a direct proof using open covers of K1 and K2 is equally
simple.

b) K1 ∪ K2 is compact.

Solution: Let {Ui} be an open cover of K1 and {VJ} be an open cover of K2.
Then their union {Ui}∪{Vj} is an open cover of K1∪K2. By compactness, a finite
subset of the {Ui} covers K1 and a finite subset of the {Vj} covers K2, then the
union of these two finite covers is a finite cover of K1 ∪ K2.
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c)
⋃

∞

j=1
Kj is compact.

Solution: Counterexamples.
i). In R let Kj = {x ∈ R : 1

j ≤ x ≤ 1, j = 1, 2, . . .}. These are closed and
bounded sets in R and hence compact. But ∪jKj = (0, 1] is not closed and hence
not compact.

ii). In R let Kj = {x ∈ R : −j ≤ x ≤ j, j = 1, 2, . . .}. These are closed bounded
sets in R, and hence compact. But ∪jKj = R is not bounded and hence not
compact.

Part C Three questions, 15 points each (so 45 points total).

C–1. Let {ak} ∈ R be a sequence of real numbers. If ak converges to some positive A > 0,
show there is an integer N so that if n > N , then an > 0.

Solution: Pick ǫ = A/2. Then there is an integer N so that if n > N then
|an − A| < ǫ, that is,

−ǫ < an − A < ǫ,

In particular, A − ǫ < an. Using ǫ = A/2, then for all n > N we have 0 < 1

2
A < an.

C–2. Let {an} ∈ C be a contracting sequence, that is there is a 0 < c < 1 so that

|an+1 − an| ≤ c|an − an−1|, n = 1, 2, 3, . . . .

a) Show that |an+1 − an| ≤ cn|a1 − a0|.
Solution: Clearly

|a4 − a3| ≤ c|a3 − a2| ≤ c2|a2 − a1| ≤ c3|a1 − a0|.

Repeating this the assertion is obvious.

b) If n > k, show that |an − ak| ≤
ck

1 − c
|a1 − a0|.

Solution: Say n > k. Then by the triangle inequality and part (a),

|an − ak| =|(an − an−1) + (an−1 − an−2) + · · · + (ak+1 − ak)|
≤|an − an−1| + |an−1 − an−2| + · · · + |ak+1 − ak|

≤
(

cn−1 + cn−2 + · · · + ck
)

|a1 − a0|

=ck

(

1 − cn

1 − c

)

|a1 − a0| <
ck

1 − c
|a1 − a0|.
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c) Show that the sequence an converges.

Solution: Since 0 < c < 1 then given any ǫ > 0, for k sufficiently large ck < ǫ.
Thus by the previous part, if n > k, then

|an − ak| <
|a1 − a0|

1 − c
ǫ.

This shows that the {ak} is a Cauchy sequence. Because R is complete, there is
some real number A to which the {an} converges.

C–3. Say the complex power series
∑

∞

n=0
anzn converges at a point z0 6= 0 ∈ C. If

|z| < |z0|, show that
∑

∞

n=1
nanzn−1 converges absolutely. [There are several different

ways to do this.]

Solution 1:
∞

∑

n=1

|nanzn−1| =
∞

∑

n=1

n|anzn
0 |

|z0|

∣

∣

∣

∣

z

z0

∣

∣

∣

∣

n−1

. (1)

Because
∑

anzn
0 converges, then anzn

0 → 0. Thus the sequence |anzn
0 | is bounded, say

|anzn
0 | ≤ M for all n.. Condequently equation (1) gives

∞
∑

n=1

|nanzn−1| ≤ M

|z0|

∞
∑

n=1

n

∣

∣

∣

∣

z

z0

∣

∣

∣

∣

n−1

.

Since |z/z0| < 1, this last series converges by the ratio test.

Solution 1′: This is just a small reorganization of the solution just above. Since
∑

∞

n=0
anz0n converges, then anzn

0 → 0. Consequently this sequence is bounded, that
is, for some M we have |anzn

0 | ≤ M for all n. This gives the inequality

|an| ≤
M

|z0|n
.

Therefore

|nanzn−1| ≤ nM

|z0|

∣

∣

∣

∣

z

z0

∣

∣

∣

∣

n−1

.

Because |z/z0| < 1, by the ratio test the series
∑

n| z
z0
|n−1 converges. Therefore, by the

comparison test
∑

∞

n=1
nanzn−1 converges absolutely.

Solution 2: By a standard theorem (see Rudin, p. 69, 3.39), for the power series
∑

cnzn, let
α = lim sup

n→∞

|cn|1/n.

Then the radius of the disk of convergence is R := 1/α. Also, inside this circle, so
|z| < R, the power series converges absolutely. For

∑

anzn, the radius R1 is thus

1

R1

= lim sup
n→∞

|an|1/n
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while for
∑

nanzn−1 since n1/n → 1, the radius, R2, is

1

R2

= lim sup
n→∞

|n an|1/n = lim sup
n→∞

|an|1/n =
1

R1

.

Thus R2 = R1. This proof assumed R1 6= 0. However if R1 = 0 the same reasoning
shows that R2 = 0.


