
Math 508 Exam 2 Jerry L. Kazdan
December 9, 2014 9:00 – 10:20

Directions This exam has three parts. Part A has 8 True/False question (2 points each
so total 16 points), Part B has 5 shorter problems (6 points each, so 30 points), while Part
C has 5 traditional problems (12 points each, so total is 60 points). Maximum score is thus
106 points.

Closed book, no calculators or computers– but you may use one 3′′ × 5′′ card with notes on
both sides.

Please silence your cellphone before the exam and keep it out of sight for the duration of
the test period. This exam begins promptly at 9:00 and ends at 10:20.
Anyone who continues working after time is called may be denied the right to submit his
or her exam or may be subject to other grading penalties. Please indicate what work you
wish to be graded and what is scratch. Clarity and neatness count.

Part A 8 True/False questions (2 points each, so 16 points). Answer only, no reasons
need be given. Circle your True/False choice. [If you wish to give a reason or example, your
work will be read.]

A–1. T F The quotient of two irrational numbers (with the denominator nonzero) is
irrational.

Solution FALSE
√

2/
√

2 or, say,
√

2/
√

8

A–2. T F If A is a nonempty compact subset of the real line R , then R −A is never
connected. (The set R − A consists of all real numbers which are not in A.)

Solution TRUE

A–3. T F If A and B are compact subsets of a metric space, then A ∪ B is also
compact.

Solution TRUE

A–4. T F A series of complex numbers converges if and only if the corresponding
sequence of partial sums is bounded.

Solution FALSE. For instance the series
∑

(−1)n

A–5. T F If X is any metric space and f : X → R is any continuous real-valued
function, then the function g : X → R defined by g(x) = (f(x))2 is always continuous.

1



Solution TRUE The product of two continuous real (or complex-valued) functions
is continuous.

A–6. T F Let X and Y be metric spaces, and let A and B be two subsets of X whose
union is X. If f : X → Y is continuous on A and continuous on B, then it is continuous
on X.

Solution FALSE. Example: Let A = {0 ≤ x < 1}, B = {1 ≤ x ≤ 2}, X = {0 ≤ x ≤
2} with f(x) = 0 on A, and f(x) = 1 on B.

A–7. T F If f : X → Y is a continuous map between metric spaces, and f(X) is
compact, then X is compact.

Solution FALSE. Example: Say f maps all of X to one point p ∈ Y . A set consisting
of one point is compact. This gives no information about X.

A–8. T F A closed and bounded subset of a metric space must be compact.

Solution FALSE (although true in R
n). Example: the unit sphere in ℓ2.

Part B 5 shorter problems (6 points each, so 30 points)

B–1. For each of the following give an example of a sequence of continuous functions
fn(x) ≥ 0. If you prefer, a clear sketch of a graph will be adequate.

a) fn(x) → 0 for all x ∈ [0, 1] but

∫
1

0

fn(x) dx ≥ 1 for all n = 1, 2, . . . .

Solution Let fn(x) be the “bump” function in the figure on the left below.

b) gn(x) → 0 for all x ∈ [0, 1] and

∫
1

0

gn(x) dx → 0 but the gn do not converge

uniformly to zero on [0, 1].

Solution Let gn(x) be the “bump” function in the figure on the right below.

x
2/n 1

−n
f (x)n

x
2/n 1

1 −
g (x)n

2



B–2. Show that there is some real x > 1 so that
x2 + 5

3 + x6
= 1.

Solution Let f(x) =
x2 + 5

3 + x7
. Then f(1) = (1 + 5)/(3 + 1) > 1 while f(2) =

(4 + 5)/(3 + 64) < 1 so the assertion follows from the Intermediate Value Theorem.

B–3. Say

∫ x

0

f(t) dt = sin(1+x2)+C, assuming that f(t) is continuous and C is a constant,

find both C and f .

Solution Let x = 0 on both sides to find that 0 = sin(1) + C so C = − sin(1).

Take the derivative of both sides to get: f(x) = 2x cos(1 + x2)

B–4. Let f(x) =
∞∑

n=2

1

n2 + cos nx

a) Prove that the series converges uniformly for all real x.

Solution Since |cos nx| ≤ 1, then n2 + cosnx ≥ n2 − 1 Therefore

1

n2 + cos nx
≤ 1

n2 − 1
.

Because the series
∑

∞

n=2
1

n2−1
converges, by the Weierstrass M test, the original

series converges absolutely and uniformly for all x.

b) Where (if anywhere) is f continuous? Why?

Solution Since the uniform limit of a sequence of continuous functions is contin-
uous, this f(x) is continuous for all real x.

B–5. Let f : R → R be a smooth function with the properties that f ′′(x) ≥ 0 and f(x) ≤
const. for all x ∈ R. Show that f(x) = constant.

Solution That f ′′(x) ≥ 0 for all x implies the graph of f is convex.
Therefore it lies above every tangent line. Say there is a point p where
f ′(p) > 0. Since the graph of f lies above this tangent line at p this would
imply that as x → ∞ then f(x) → ∞, contradicting that f(x) ≤ const.

Similarly, if there were a point q where f ′(q) ≤ 0, then the graph of f lies above the
tangent line at q. Consequently as x → −∞ then f(x) → ∞, again contradicting the
boundedness of f .

Remark: Note that the assumption f ′′(x) ≥ 0 does not imply that f ′(x) is positive
somewhere. An example is e−x.
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Part C 5 traditional problems (12 points each, so total is 60 points)

C–1. Let an be a sequence of complex numbers with an → A as n → ∞ and let

Sn =
a1 + a2 + · · · + an

n
.

Show that Sn → A as n → ∞.

Solution

Sn − A =
a1 + a2 + · · · + an

n
− A =

(a1 − A) + (a2 − A) + · · · + (an − A)

n
.

We reduce to the special case where A = 0 by letting bn = an − A. Then bn → 0 and
we need to show that

Tn :=
b1 + b2 + · · · + bn

n
→ 0. (1)

Since bn → 0, Given ǫ > 0 there is an N so that if n > N then |bn| < ǫ. Rewrite (1) as
the sum of two terms:

Tn =
b1 + b2 + · · · + bN

n
+

bN+1 + bN+2 + · · · + bn

n
= In + Jn.

By our choice of N , |Jn| ≤ (n−N)ǫ/n < ǫ. It is important to note that this will remain
true if we choose an even larger value of n.

To estimate In, we use that since the sequence bn converges, it is bounded. Thus for
some M we know that |bn| < M . Consequently, |In| ≤ NM/n. Now choose n so large
that NM/n < ǫ. Then

|Tn| ≤ |In| + |Jn| < 2ǫ.

C–2. Let f(x) ∈ C([0, 1]) have the property that
∫

1

0
f(x)h(x) dx = 0 for it all functions

h ∈ C([0, 1]) with the additional property that h(0) = h(1) = 0. Prove that f(x) ≡ 0
on all of [0, 1].

Solution By contradiction, say that f(p) > 0 at some p ∈ [0, 1].
Because f is continuous, it will be positive at all nearby points. Thus
we may assume that p is an interior point and also that f > 0 in
a small interval J containing p. Let h(x) be a continuous “bump”
function with h(x) > 0 in J , and h(x) = 0 in the remainder of [0, 1]
Then ∫

1

0

f(x)h(x) dx =

∫
J

f(x)h(x) dx > 0,

which is a contradiction.

x

−

1

h(x)

p

The identical construction works if f(p) < 0 at some p ∈ [0, 1].
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C–3. Let M be a metric space and let B(M; R) be the set of all bounded real-valued
functions on M with the uniform norm:

‖f‖ = sup
x∈M

|f(x)|.

Since f is assumed to be bounded, then ‖f‖ < ∞. Define the distance between f and
g to be ‖f − g‖. This makes B into a metric space. Show that this is a complete metric
space.

There are two steps: (i). Get a candidate for the limit function f(x), and (ii). Prove
that this f(x) is bounded. [Where does your proof use that R is complete?]

Solution Let fn(x) be a sequence of bounded function that is a Cauchy sequence
in this norm. In particular, at any point x = p ∈ M, fn(p) is a Cauchy sequence of
real numbers. Because of the completeness of the real numbers, the fn(p) converge of
some real number, say q so we will define f(p) to be this number q. This gives us the
function to which the Cauchy sequence fn converges.

We now need only show that f(x) is a bounded function. This follows from the fact
that a Cauchy sequence is always bounded. In fact, letting ǫ = 1, there is an N1 so
that if k > N1 then ‖fk − fN1

‖ < 1. Thus, for any point p

|f(p)| ≤|f(p) − fk(p)| + ‖fk − fN1
‖ + ‖fN1

‖
<|f(p) − fk(p)| + 1 + ‖fN1

‖.

Since fk(p) → f(p) the first term on the right can be made less than, say, 1, by choosing
k large, while the last term in bounded because the functions we were working with
were assumed to be bounded.

Consequently, the space of bounded continuous functions if complete.

C–4. Suppose that G : R
n → R

n is a continuous function with the property that for some
real M

‖G(x) − G(y)‖ ≤ M‖x − y‖ for all x, y ∈ R
n. (2)

Here ‖x‖ is the standard Euclidean distance in R
n.

If λ > 0 is small enough, show that the function F : R
n → R

n defined by

F (x) = x − λG(x)

is one-to-one and onto, so for every z ∈ R
n the equation F (x) = z has one and only

one solution x ∈ R
n. Note that a solution x is a fixed point of some map.

Solution We use a contracting mapping. For our complete metric space we use R
n

with the Euclidean norm. The equation we want to solve is x − λG(x) = z. We seek a
fixed point of the map

T (x) := λG(x) + z.
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Clearly T maps R
n into itself so we only need to verify the contracting condition using

the special property (2) of G:

‖T (x) − T (y)‖ = λ‖G(x) − G(y)‖ ≤ λM‖x − y‖.

It is now clear that picking λ so that λM < 1 the contracting assumption is satisfied.
Thus,as desired, T has a unique fixed point. [Remark: This problem is the essence
of the Inverse Function Theorem].

C–5. Let f(x) : R → R be continuous for all x with f(x) = 0 for
|x| ≥ 1 and let gn(x) be the sequence of functions in the
figure. Let

hn(t) =

∫
1

−1

f(t − x)gn(x) dx

n

−1 −1/n 1/n 1

g (x)n

x

a) Show that hn is uniformly continuous.

Solution

hn(t) − hn(s) =

∫
1

−1

[f(t − x) − f(s − x)]gn(x) dx

Because f(x) is continuous on R and zero for |x| ≥ 1, it is uniformly continuous on
R. Given any ǫ > 0 there is a δ so that if |t − s| < δ then |f(t) − f(s)| < ǫ. But
(t − x) − (s − x) = t − s so |f(t − x) − f(s − x)| < ǫ. Therefore,

|hn(t) − hn(s)| ≤
∫

1

−1

ǫgn(x) dx = ǫ.

This shows that hn is uniformly continuous.

b) Show that lim
n→∞

hn(t) = f(t) uniformly.

Solution We use f(t) =
∫

1

−1
f(t)gn(x) dx. Then

hn(t) − f(t) =

∫
1/n

−1/n
[f(t − x) − f(t)]gn(x) dx.

With δ from part (a), pick n so that 1/n < δ. Then |(t − x) − t| = |x| < 1/n < δ
so that |f(t − x) − f(t)| < ǫ. Therefore

|hn(t) − f(t)| ≤
∫

1/n

−1/n
ǫgn(x) dx = ǫ.

Because the right side is independent of t we have proved that hn converges to f
uniformly.
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