Aug. 28, 2014
$\mathrm{T}_{\mathrm{E}} \mathrm{X}$ and $\mathrm{LAT}_{\mathrm{E}} \mathrm{X}$: Learn this.

Problem Set 0

- get stuck
- work together
- definitions
- proofs: The best proof one you thought of yourself.
- algebra, geometry, analysis, intuition
- examples
- $1^{2}+2^{2}+c^{2}+\cdots+n^{2}=$?

$$
\int_{0}^{3} x^{2} d x<1^{2}+2^{2}+3^{2}<\int_{0}^{3}(1+x)^{2} d x
$$

Rudin: Proofs are sometimes too optimal. No pictures.

Sets

- well defined? Russel's Paradox
- $A \cup B, A \cap B$
- maps $f: A \rightarrow B$ one-to-one (injective), onto (surjective) one-to-one \& onto (bijective, invertible) preserve some additional structure (algebraic or geometric/topological) $f: n \rightarrow 2 n$ homomorphism, isomorphism, homeomorphism, isometry

Equivalence Relation $x \sim y$

reflexive: $x \sim x$
symmetric: $x \sim y$ implies $y \sim x$
transitive: If $x \sim y$ and $y \sim z$, then $x \sim z$
EXAMPLES

1. similar triangles, congruent triangles
2. same birthday
3. integers mod 3
4. same genes (identical twins etc)
5. cardinality of sets
[Last revised: August 28, 2014]
