Dirichlet's Principle

By 1840 it was known that if $S \subset \mathbb{R}$ is a closed and bounded set and $f: S \rightarrow \mathbb{R}$ is a continuous function, then there are points p and q in S where f has its maximum and minimum value.
Mathematicians and physicists were considering more complicated functions, such as, on a smooth surface S in \mathbb{R}^{3} finding the shortest path in the surface joining the two points p and q. If we write the curve as $\vec{\gamma}(t)=(x(t), y(t), z(t)) \subset S$ where $\gamma(\overrightarrow{0})=p$ and $\vec{\gamma}(1)=q$, then the length of the curve is

$$
J(\vec{\gamma})=\int_{0}^{1}\left|\vec{\gamma}^{\prime}(t)\right| d t
$$

To find the curve minimizing the distance we need to look at all curves in the surface and find the curve minimizing J. Thus we seek functions $x(t), y(t)$, and $z(t)$. If the surface is smooth, is there always a minimizing curve? If so, is it smooth?
Historically, the first interesting problem of this sort was to study a bead, starting from rest, sliding down a curve under the influence of gravity. In particular, given the points P and Q, find the equation of curve $y=f(x)$ from P to Q so the particle arrives at Q
in the least time. This is called the Brachistochrone Problem. The solution is interesting - and not at all obvious. Look it up.
One problem for a function $u(x, y)$ in several variables arose in a number of applications. Let $\Omega \subset \mathbb{R}^{2}$ be a bounded region with a smooth boundary $\partial \Omega$. and let $f(x, y)$ be a smooth function defined on the boundary, $\partial \Omega$. We seek a function $u(x, y)$ that minimizes the "energy"

$$
\begin{equation*}
J(v)=\iint_{\Omega}\left[v_{x}^{2}+v_{y}^{2}\right] d x d y=\iint_{\Omega}|\nabla v|^{2} d x d y \tag{1}
\end{equation*}
$$

among all functions $v(x, y)$ that agree with f on the boundary: $v(x, y)=f(x, y)$ for $(x, y) \in \partial \Omega$. In 1851, for his proof of what we call the Riemann Mapping Theorem, Riemann was seeking a minimizer since this minimizer it would be a solution of the Laplace equation:

$$
\begin{equation*}
u_{x x}+u_{y y}=0 \quad \text { in } \Omega \text { with } u=f \text { on } \partial \Omega . \tag{2}
\end{equation*}
$$

It is easy to show this. Since we want to minimize something, the idea is to use that at a minimum of a real-valued function $\varphi(t)$ its first derivative is zero.
The computation we will use to seek a minimum of
the (smooth) function $J(v)$ closely follows that used for a real-valued function $f(X)$ of several variables, $X=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$. We recall this. Say f has a local minimum at an interior point X_{0} of the set where f is defined. For any vector $Z \in \mathbb{R}^{n}$ let

$$
\varphi(t)=f\left(X_{0}+t Z\right)
$$

Observe that $f\left(X_{0}+t Z\right) \geq f\left(X_{0}\right)=\varphi(0)$, that is, $\varphi(0) \leq \varphi(t)$ for all t near zero. Thus φ has a local \min at $t=0$ so its derivative at 0 is zero: $\varphi^{\prime}(0)=0$ (this is the directional derivative of f at X_{0} in the direction of the vector $Z)$. But by the chain rule,

$$
0=\varphi^{\prime}(0)=\nabla f\left(X_{0}\right) \cdot Z .
$$

Because Z ia an arbitrary vector, this says that ∇f is orthogonal to all vectors so it must be zero, that is, $\nabla\left(f\left(X_{0}\right)=0\right.$.
We use the same procedure to find the minima of $J(v)$ in equation (1). Say a function u satisfying the boundary condition minimizes J. Let $h(x, y)$ be any smooth function that is zero on the boundary $\partial \Omega$. Then for any real t the function $u(x, y)+t h(x, y)$ also
satisfies the boundary conditions. Thus the function $\varphi(t):=J(u+t h)=\iint_{\Omega}\left[|\nabla u|^{2}+2 t \nabla u \cdot \nabla h+t^{2}|\nabla h|^{2}\right] d x d y$
has a minimum at $t=0$. Therefore $\varphi^{\prime}(0)=0$. That is,

$$
\begin{equation*}
\iint_{\Omega} \nabla u \cdot \nabla h d x d y=0 \tag{3}
\end{equation*}
$$

for any smooth function h that is zero on the boundary. Assuming the minimizer u is smooth,

$$
\nabla u \cdot \nabla h=\nabla \cdot(h \nabla u)-h \Delta u
$$

where $\Delta u=\nabla \cdot \nabla u=u_{x x}+u_{y y}$ is the Laplacian. Thus integrating by parts (the Divergence Theorem), equation (3) implies that

$$
\begin{equation*}
\iint_{\Omega}(\Delta u) h d x d y=0 \tag{4}
\end{equation*}
$$

for all h that are zero on $\partial \Omega$. This implies that $\Delta u=$ 0 throughout Ω (Proof: say $\Delta u>0$ in a small disk $Q \subset \Omega$. Pick any h that is positive on this disk and zero outside it. But then for this h we have

$$
\iint_{\Omega}(\Delta u) h d x d y=\iint_{Q}(\Delta u) h d x d y>0
$$

contradicting equation (4). Thus, finding a minimizer of (1) gives a solution of the Laplace equation (2) with the desired boundary values.

Riemann's innovation was using the existence of a minimizer of (1) to prove the existence of a solution of the boundary value problem (2). He call this Dirichlet's Principle. Since in (1) $J(v)$ is bounded below (by zero), it is clear that J has an infimum among all functions v satisfying the boundary condition. It is not at all clear that there is a twice differentiable function u that actually minimizes J. To illustrate the difficulty Weierstrass gave an explicit example of a related problem

$$
\operatorname{Minimize} J(v):=\int_{-1}^{1} x^{2} v^{\prime 2}(x) d x
$$

for all v with $v(-1)=-1$ and $v(1)=1$. Following his reasoning, we show that J have an infimum but does not have a minimum. He considered the sequence of functions

$$
v_{n}(x)= \begin{cases}-1 & \text { if }-1 \leq x \leq-1 / n \\ n x & \text { if }-1 / n \leq x \leq 1 / n \\ 1 & \text { if } 1 / n \leq x \leq 1\end{cases}
$$

By an easy calculation has $J\left(v_{n}\right)=2 /(3 n) \rightarrow 0$. This shows that the $\inf J(v)=0$ (if you prefer a smooth sequence of functions you can use $v_{n}(x):=$ $\left.\frac{\tanh n x}{\tanh n}\right)$. However, if there is a v with $J(v)=0$ then $v^{\prime}=0$, so v must be a constant- and that can't satisfy the boundary conditions. Thus this J has an inf but not a min.
Mathematicians generally believed the idea behind Riemann's proof of the existence of a solution to (2) - but there certainly was a gap in the proof. It took about 50 years to develop the ideas such as compactness needed to understand the situation adequately.

Toy Example: Here is a toy (but not obvious) example where the idea behind Dirichlet's Principle works immediately. Say you are seeking a solution (x, y) of the two equations

$$
\begin{array}{r}
2 x\left(x^{2}+y^{2}\right)+y-1=0 \\
2 y\left(x^{2}+y^{2}\right)+2 y^{3}+x+2=0 \tag{5}
\end{array}
$$

Idea: find a function $f(x, y)$ that has a local minimum somewhere and with the property that equations (5) are the equations $f_{x}=0$ and $f_{y}=0$, so
they will be satisfied at this local minimum.
Consider the function

$$
f(x, y)=\left(x^{2}+y^{2}\right)^{2}+y^{4}+2 x y-2 x-+4 y-3
$$

Computing f_{x} and f_{y}, except for a factor of 2 , these are exactly the equations (5) we wanted to solve. Thus, if we can show that f has a local minimum somewhere, then at least one solution exists, namely $\left(x_{0}, y_{0}\right)$.
With this problem in mind, in Homework Set 2 Problem 4 you found a number R so that if $x^{2}+y^{2} \geq R^{2}$ then $f(x, y) \geq 1$. Since the disk $x^{2}+y^{2} \leq R^{2}$ is compact, there is at least one point $\left(x_{0}, y_{0}\right)$ in this disk where f attains its minimum. Because $f(0,0)=-3<1$, this point is not on the boundary of the disk so it is an interior point. Thus, at this point, the gradient of f is zero, that is, $f_{x}\left(x_{0}, y_{0}\right)=0$ and $f_{y}\left(x_{0}, y_{0}\right)=0$.

Last revised October 16, 2014

