
Dirichlet’s Principle

By 1840 it was known that if S ⊂ R is a closed and
bounded set and f : S → R is a continuous function,
then there are points p and q in S where f has its
maximum and minimum value.

Mathematicians and physicists were considering more
complicated functions, such as, on a smooth surface
S in R

3 finding the shortest path in the surface join-
ing the two points p and q. If we write the curve as

~γ(t) = (x(t), y(t), z(t)) ⊂ S where ~γ(0) = p and
~γ(1) = q, then the length of the curve is

J(~γ) =

∫

1

0

|~γ ′(t)| dt.

To find the curve minimizing the distance we need to
look at all curves in the surface and find the curve
minimizing J . Thus we seek functions x(t), y(t),
and z(t). If the surface is smooth, is there always a
minimizing curve? If so, is it smooth?

Historically, the first interesting problem of this sort
was to study a bead, starting from rest, sliding down
a curve under the influence of gravity. In particular,
given the points P and Q, find the equation of curve
y = f (x) from P to Q so the particle arrives at Q
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in the least time. This is called the Brachistochrone

Problem. The solution is interesting – and not at all
obvious. Look it up.

One problem for a function u(x, y) in several vari-
ables arose in a number of applications. Let Ω ⊂ R

2

be a bounded region with a smooth boundary ∂Ω.
and let f (x, y) be a smooth function defined on the
boundary, ∂Ω. We seek a function u(x, y) that min-
imizes the “energy”

J(v) =

∫∫

Ω

[v2

x + v2

y] dx dy =

∫∫

Ω

|∇v|2 dx dy (1)

among all functions v(x, y) that agree with f on the
boundary: v(x, y) = f (x, y) for (x, y) ∈ ∂Ω. In
1851, for his proof of what we call the Riemann Map-
ping Theorem, Riemann was seeking a minimizer
since this minimizer it would be a solution of the
Laplace equation:

uxx + uyy = 0 in Ω with u = f on ∂Ω. (2)

It is easy to show this. Since we want to minimize
something, the idea is to use that at a minimum of a
real-valued function ϕ(t) its first derivative is zero.

The computation we will use to seek a minimum of
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the (smooth) function J(v) closely follows that used
for a real-valued function f (X) of several variables,
X = (x1, x2, . . . , xn). We recall this. Say f has
a local minimum at an interior point X0 of the set
where f is defined. For any vector Z ∈ R

n let

ϕ(t) = f (X0 + tZ).

Observe that f (X0 + tZ) ≥ f (X0) = ϕ(0), that is,
ϕ(0) ≤ ϕ(t) for all t near zero. Thus ϕ has a local
min at t = 0 so its derivative at 0 is zero: ϕ′(0) = 0
(this is the directional derivative of f at X0 in the
direction of the vector Z). But by the chain rule,

0 = ϕ′(0) = ∇f (X0) · Z.

Because Z ia an arbitrary vector, this says that ∇f
is orthogonal to all vectors so it must be zero, that
is, ∇(f (X0) = 0.

We use the same procedure to find the minima of
J(v) in equation (1). Say a function u satisfying the
boundary condition minimizes J . Let h(x, y) be any
smooth function that is zero on the boundary ∂Ω.
Then for any real t the function u(x, y)+th(x, y) also
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satisfies the boundary conditions. Thus the function

ϕ(t) := J(u+th) =

∫∫

Ω

[

|∇u|2+2t∇u·∇h+t2|∇h|2
]

dx dy

has a minimum at t = 0. Therefore ϕ′(0) = 0. That
is,

∫∫

Ω

∇u · ∇h dx dy = 0 (3)

for any smooth function h that is zero on the bound-
ary. Assuming the minimizer u is smooth,

∇u · ∇h = ∇ · (h∇u) − h∆u,

where ∆u = ∇ · ∇u = uxx + uyy is the Laplacian.
Thus integrating by parts (the Divergence Theorem),
equation (3) implies that

∫∫

Ω

(∆u)h dx dy = 0 (4)

for all h that are zero on ∂Ω. This implies that ∆u =
0 throughout Ω (Proof: say ∆u > 0 in a small disk
Q ⊂ Ω. Pick any h that is positive on this disk and
zero outside it. But then for this h we have

∫∫

Ω

(∆u)h dx dy =

∫∫

Q

(∆u)h dx dy > 0.
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contradicting equation (4). Thus, finding a mini-
mizer of (1) gives a solution of the Laplace equation
(2) with the desired boundary values.

Riemann’s innovation was using the existence of a
minimizer of (1) to prove the existence of a solution of
the boundary value problem (2). He call this Dirich-

let’s Principle. Since in (1) J(v) is bounded below
(by zero), it is clear that J has an infimum among
all functions v satisfying the boundary condition. It
is not at all clear that there is a twice differentiable
function u that actually minimizes J . To illustrate
the difficulty Weierstrass gave an explicit example of
a related problem

Minimize J(v) :=

∫

1

−1

x2v′ 2(x) dx

for all v with v(−1) = −1 and v(1) = 1. Follow-
ing his reasoning, we show that J have an infimum
but does not have a minimum. He considered the
sequence of functions

vn(x) =











−1 if −1 ≤ x ≤ −1/n,

nx if −1/n ≤ x ≤ 1/n.

1 if 1/n ≤ x ≤ 1

.
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By an easy calculation has J(vn) = 2/(3n) → 0.
This shows that the inf J(v) = 0 (if you prefer a
smooth sequence of functions you can use vn(x) :=
tanh nx
tanh n ). However, if there is a v with J(v) = 0 then
v′ = 0, so v must be a constant– and that can’t
satisfy the boundary conditions. Thus this J has an
inf but not a min.

Mathematicians generally believed the idea behind
Riemann’s proof of the existence of a solution to (2)
– but there certainly was a gap in the proof. It took
about 50 years to develop the ideas such as compact-
ness needed to understand the situation adequately.

Toy Example: Here is a toy (but not obvious)
example where the idea behind Dirichlet’s Principle
works immediately. Say you are seeking a solution
(x, y) of the two equations

2x(x2 + y2) + y − 1 = 0

2y(x2 + y2) + 2y3 + x + 2 = 0
(5)

Idea: find a function f (x, y) that has a local mini-
mum somewhere and with the property that equa-
tions (5) are the equations fx = 0 and fy = 0, so
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they will be satisfied at this local minimum.
Consider the function

f (x, y) = (x2 + y2)2 + y4 + 2xy − 2x − +4y − 3

Computing fx and fy, except for a factor of 2, these
are exactly the equations (5) we wanted to solve.
Thus, if we can show that f has a local minimum
somewhere, then at least one solution exists, namely
(x0, y0).
With this problem in mind, in Homework Set 2 Prob-
lem 4 you found a number R so that if x2 + y2 ≥ R2

then f (x, y) ≥ 1. Since the disk x2 + y2 ≤ R2

is compact, there is at least one point (x0, y0) in
this disk where f attains its minimum. Because
f (0, 0) = −3 < 1, this point is not on the bound-
ary of the disk so it is an interior point. Thus, at this
point, the gradient of f is zero, that is, fx(x0, y0) = 0
and fy(x0, y0) = 0.
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