Dirichlet’s Principle

By 1840 it was known that if S C R is a closed and
bounded set and f : S — R is a continuous function,
then there are points p and ¢ in S where f has its
maximum and minimum value.

Mathematicians and physicists were considering more
complicated functions, such as, on a smooth surface
S in R? finding the shortest path in the surface join-
ing the two points p and ¢. If we write the curve as

Y(t) = (x(t), y(t), 2(t)) C S where 7(0) = p and
(1) = g, then the length of the curve is

J(3) = /0 5(8)] dt.

To find the curve minimizing the distance we need to
look at all curves in the surface and find the curve
minimizing J. Thus we seek functions z(t), y(t),
and z(t). If the surface is smooth, is there always a
minimizing curve? If so, is it smooth?

Historically, the first interesting problem of this sort
was to study a bead, starting from rest, sliding down
a curve under the influence of gravity. In particular,
oiven the points P and (), find the equation of curve
y = f(x) from P to @ so the particle arrives at )
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in the least time. This is called the Brachistochrone
Problem. The solution is interesting — and not at all
obvious. Look it up.

One problem for a function u(x,y) in several vari-
ables arose in a number of applications. Let 0 C R?
be a bounded region with a smooth boundary 0f2.
and let f(z,y) be a smooth function defined on the
boundary, 0€). We seek a function u(x,y) that min-
imizes the “energy”

J<v)://Q[v§+v§]d:cdy://Q\wﬁdxdy (1)

among all functions v(x, y) that agree with f on the
boundary: v(z,y) = f(z,y) for (x, y) € 0. In
1851, for his proof of what we call the Riemann Map-
ping Theorem, Riemann was seeking a minimizer
since this minimizer it would be a solution of the
Laplace equation:

Upz + Uyy =0 in  with w=f ondQ. (2)

[t is easy to show this. Since we want to minimize
something, the idea is to use that at a minimum of a
real-valued function o(t) its first derivative is zero.

The computation we will use to seek a minimum of
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the (smooth) function J(v) closely follows that used
for a real-valued function f(X) of several variables,
X = (x1,29,...,x,). We recall this. Say f has
a local minimum at an interior point X, of the set
where f is defined. For any vector Z € R" let

o(t) = f(Xo +t2).

Observe that f(Xo+tZ) > f(Xo) = ¢(0), that is,
©(0) < (t) for all t near zero. Thus ¢ has a local
min at ¢ = 0 so its derivative at 0 is zero: ¢'(0) = 0
(this is the directional derivative of f at X in the
direction of the vector Z). But by the chain rule,

0=¢'(0) =Vf(Xo)- Z

Because Z ia an arbitrary vector, this says that V f
is orthogonal to all vectors so it must be zero, that

is, V(f(Xo) = 0.

We use the same procedure to find the minima of
J(v) in equation (1). Say a function u satisfying the
boundary condition minimizes J. Let h(x,y) be any
smooth function that is zero on the boundary 0Of).
Then for any real ¢ the function u(x, y)+th(x, y) also



satisfies the boundary conditions. Thus the function
o(t) == J(u+th) = / [|Vu\2+2tVu-Vh+t2\Vh\2} dx dy
Q

has a minimum at ¢t = 0. Therefore ¢'(0) = 0. That
1S

)

/ Vu-Vhdrdy =0 (3)
0

for any smooth function h that is zero on the bound-
ary. Assuming the minimizer u is smooth,

Vu-Vh=V-(hVu)— hAu,

where Au = V - Vu = vy, + uy, is the Laplacian.
Thus integrating by parts (the Divergence Theorem),
equation (3) implies that

// (Au)hdz dy =0 (4)

for all h that are zero on 0€2. This implies that Au =
0 throughout 2 (Proof: say Au > 0 in a small disk
) C ). Pick any h that is positive on this disk and
zero outside it. But then for this h we have

//Q(Au)h d dy = //Q(Au)h dz dy > 0.
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contradicting equation (4). Thus, finding a mini-
mizer of (1) gives a solution of the Laplace equation
(2) with the desired boundary values.

Riemann’s innovation was using the existence of a
minimizer of (1) to prove the existence of a solution of
the boundary value problem (2). He call this Dirich-
let’s Principle. Since in (1) J(v) is bounded below
(by zero), it is clear that J has an infimum among
all functions v satisfying the boundary condition. It
is not at all clear that there is a twice differentiable
function uw that actually minimizes J. To illustrate
the dificulty Weierstrass gave an explicit example of
a related problem

1
Minimize J(v) ::/ v 4 (x) dx
-1

for all v with v(—1) = —1 and v(1) = 1. Follow-
ing his reasoning, we show that J have an infimum
but does not have a minimum. He considered the
sequence of functions

(—1 if-1<z<-—1/n,

vp(z) =< ne  if—1/n<x<1/n..

1 if1/n<zx<l1

\
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By an easy calculation has J(v,) = 2/(3n) — 0.
This shows that the inf J(v) = 0 (if you prefer a
smooth sequence of functions you can use v,(z) :=

tanh i) - However, if there is a v with J(v) = 0 then
v/ = 0, so v must be a constant— and that can’t
satisty the boundary conditions. Thus this J has an

inf but not a man.

Mathematicians generally believed the idea behind
Riemann’s proof of the existence of a solution to (2)
— but there certainly was a gap in the proot. It took
about 50 years to develop the ideas such as compact-
ness needed to understand the situation adequately.

Toy EXaMPLE: Here is a toy (but not obvious)
example where the idea behind Dirichlet’s Principle
works immediately. Say you are seeking a solution

x,vy) of the two equations
(z,y)
2x(z* +y*) +y—1=0
y(x? + )+ 23+ +2=0

(5)

Idea: find a function f(x,y) that has a local mini-
mum somewhere and with the property that equa-
tions () are the equations f, = 0 and f, = 0, so
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they will be satisfied at this local minimum.
Consider the function

flo,y) = (2° +y°)° +y* + 2vy — 20 — +4y — 3

Computing f, and f,, except for a factor of 2, these
are exactly the equations (5) we wanted to solve.
Thus, if we can show that f has a local minimum
somewhere, then at least one solution exists, namely
(%0, Yo)-

With this problem in mind, in Homework Set 2 Prob-
lem 4 you found a number R so that if 22+ y* > R*
then f(xz,y) > 1. Since the disk 2 + y* < R?
is compact, there is at least one point (x¢, %) in
this disk where f attains its minimum. Because
f(0,0) = =3 < 1, this point is not on the bound-
ary of the disk so it is an interior point. Thus, at this
point, the gradient of f is zero, that is, f.(xg, yo) = 0

and f,(zo,y0) = 0.
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