
Dirichlet’s Principle

By 1840 it was known that if S ⊂ R is a closed and bounded set and f : S → R is a
continuous function, then there are points p and q in S where f has its maximum and
minimum value.

Mathematicians and physicists were considering more complicated functions, such as, on a
smooth surface S in R

3 finding the shortest path in the surface joining the two points p and
q. If we write the curve as ~γ(t) = (x(t), y(t), z(t)) ⊂ S where ~γ(0) = p and ~γ(1) = q, then
the length of the curve is

J(~γ) =

∫

1

0

|~γ ′(t)| dt.

To find the curve minimizing the distance we need to look at all curves in the surface and
find the curve minimizing J . Thus we seek functions x(t), y(t), and z(t). If the surface is
smooth, is there always a minimizing curve? If so, is it smooth?

Historically, the first interesting problem of this sort was to study a bead, starting from
rest, sliding down a curve under the influence of gravity. In particular, given the points P
and Q, find the equation of curve y = f(x) from P to Q so the particle arrives at Q in the
least time. This is called the Brachistochrone Problem. The solution is interesting – and
not at all obvious. Look it up.

One problem for a function u(x, y) in several variables arose in a number of applications.
Let Ω ⊂ R

2 be a bounded region with a smooth boundary ∂Ω. and let f(x, y) be a smooth
function defined on the boundary, ∂Ω. We seek a function u(x, y) that minimizes the
“energy”

J(v) =

∫∫

Ω

[v2
x + v2

y ] dx dy =

∫∫

Ω

|∇v|2 dx dy (1)

among all functions v(x, y) that agree with f on the boundary: v(x, y) = f(x, y) for (x, y) ∈
∂Ω. In 1851, for his proof of what we call the Riemann Mapping Theorem, Riemann was
seeking a minimizer since this minimizer it would be a solution of the Laplace equation:

uxx + uyy = 0 in Ω with u = f on ∂Ω. (2)

It is easy to show this. Since we want to minimize something, the idea is to use that at a
minimum of a real-valued function ϕ(t) its first derivative is zero.

The computation we will use to seek a minimum of the (smooth) function J(v) closely
follows that used for a real-valued function f(X) of several variables, X = (x1, x2, . . . , xn).
We recall that. Say f has a local minimum at an interior point X0 of the set where f is
defined. For any vector Z ∈ R

n let

ϕ(t) = f(X0 + tZ).

Observe that f(X0 + tZ) ≥ f(X0) = ϕ(0), that is, ϕ(0) ≤ ϕ(t) for all t near zero. Thus
ϕ has a local min at t = 0 so its derivative at 0 is zero: ϕ′(0) = 0 (this is the directional
derivative of f at X0 in the direction of the vector Z). But by the chain rule,

0 = ϕ′(0) = ∇f(X0) · Z.
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Because Z ia an arbitrary vector, this says that ∇f is orthogonal to all vectors so it must
be zero, that is, ∇(f(X0) = 0.

We use the same procedure to find the minima of J(v) in equation (1). Say a function u
satisfying the boundary condition minimizes J . Let h(x, y) be any smooth function that is
zero on the boundary ∂Ω. Then for any real t the function u(x, y) + th(x, y) also satisfies
the boundary conditions. Thus the function

ϕ(t) := J(u + th) =

∫∫

Ω

[

|∇u|2 + 2t∇u · ∇h + t2|∇h|2
]

dx dy

has a minimum at t = 0. Therefore ϕ′(0) = 0. That is,
∫∫

Ω

∇u · ∇h dx dy = 0 (3)

for any smooth function h that is zero on the boundary. Assuming the minimizer u is
smooth,

∇u · ∇h = ∇ · (h∇u) − h∆u,

where ∆u = ∇·∇u = uxx +uyy is the Laplacian. Thus integrating by parts (the Divergence
Theorem), equation (3) implies that

∫∫

Ω

(∆u)h dx dy = 0 (4)

for all h that are zero on ∂Ω. This implies that ∆u = 0 throughout Ω (Proof: say ∆u > 0
in a small disk Q ⊂ Ω. Pick any h that is positive on this disk and zero outside it. But
then for this h we have

∫∫

Ω

(∆u)h dx dy =

∫∫

Q

(∆u)h dx dy > 0.

contradicting equation (4). Thus, finding a minimizer of (1) gives a solution of the Laplace
equation (2) with the desired boundary values.

Riemann’s innovation was using the existence of a minimizer of (1) to prove the existence
of a solution of the boundary value problem (2). He call this Dirichlet’s Principle. Since in
(1) J(v) is bounded below (by zero), it is clear that J has an infimum among all functions
v satisfying the boundary condition. It is not at all clear that there is a twice differentiable
function u that actually minimizes J . To illustrate the difficulty Weierstrass gave an explicit
example of a related problem

Minimize J(v) :=

∫

1

−1

x2v′ 2(x) dx

for all v with v(−1) = −1 and v(1) = 1. Following his reasoning, we show that J have an
infimum but does not have a minimum. He considered the sequence of functions

vn(x) =











−1 if −1 ≤ x ≤ −1/n,

nx if −1/n ≤ x ≤ 1/n.

1 if 1/n ≤ x ≤ 1

.
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By an easy calculation has J(vn) = 2/(3n) → 0. This shows that the inf J(v) = 0 (if you
prefer a smooth sequence of functions you can use vn(x) := tanh nx

tanh n
). However, if there is a

v with J(v) = 0 then v′ = 0, so v must be a constant– and that can’t satisfy the boundary
conditions. Thus this J has an inf but not a min.

Mathematicians generally believed the idea behind Riemann’s proof of the existence of a
solution to (2) – but there certainly was a gap in the proof. It took about 50 years to
develop the ideas such as compactness needed to understand the situation adequately.

Toy Example: Here is a toy (but not obvious) example where the idea behind Dirichlet’s
Principle works immediately. Say you are seeking a solution (x, y) of the two equations

2x(x2 + y2) + y − 1 = 0

2y(x2 + y2) + 2y3 + x + 2 = 0
(5)

Idea: find a function f(x, y) that has a local minimum somewhere and with the property
that equations (5) are the equations fx = 0 and fy = 0, so they will be satisfied at this local
minimum.
Consider the function

f(x, y) = (x2 + y2)2 + y4 + 2xy − 2x − +4y − 3

Computing fx and fy, except for a factor of 2, these are exactly the equations (5) we wanted
to solve. Thus, if we can show that f has a local minimum somewhere, then at least one
solution exists, namely (x0, y0).
With this problem in mind, in Homework Set 2 Problem 4 you found a number R so that
if x2 + y2 ≥ R2 then f(x, y) ≥ 1. Since the disk x2 + y2 ≤ R2 is compact, there is at least
one point (x0, y0) in this disk where f attains its minimum. Because f(0, 0) = −3 < 1, this
point is not on the boundary of the disk so it is an interior point. Thus, at this point, the
gradient of f is zero, that is, fx(x0, y0) = 0 and fy(x0, y0) = 0.
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