Dirichlet’s Principle

By 1840 it was known that if S C R is a closed and bounded set and f : § — R is a
continuous function, then there are points p and g in S where f has its maximum and
minimum value.

Mathematicians and physicists were considering more complicated functions, such as, on a
smooth surface S in R? finding the shortest path in the surface joining the two points p and

q. If we write the curve as ¥(t) = (z(t), y(t), 2(t)) C S where v(0) = p and J(1) = ¢, then
the length of the curve is

J(3) = / 5(t) dt.

To find the curve minimizing the distance we need to look at all curves in the surface and
find the curve minimizing J. Thus we seek functions z(t), y(¢), and z(t). If the surface is
smooth, is there always a minimizing curve? If so, is it smooth?

Historically, the first interesting problem of this sort was to study a bead, starting from
rest, sliding down a curve under the influence of gravity. In particular, given the points P
and @, find the equation of curve y = f(x) from P to @ so the particle arrives at @ in the
least time. This is called the Brachistochrone Problem. The solution is interesting — and
not at all obvious. Look it up.

One problem for a function u(x,y) in several variables arose in a number of applications.
Let Q C R? be a bounded region with a smooth boundary 9Q. and let f(z,y) be a smooth
function defined on the boundary, 0€2. We seek a function u(z,y) that minimizes the

Lﬁenergy”
J(v) = // [v2 +U§] dx dy = //|Vv|2dxdy (1)
Q Q

among all functions v(z, y) that agree with f on the boundary: v(z,y) = f(z,y) for (z, y) €
09). In 1851, for his proof of what we call the Riemann Mapping Theorem, Riemann was
seeking a minimizer since this minimizer it would be a solution of the Laplace equation:

Uge +Uyy =0 in Q@ with u=f on 0. (2)
It is easy to show this. Since we want to minimize something, the idea is to use that at a
minimum of a real-valued function ¢(t) its first derivative is zero.

The computation we will use to seek a minimum of the (smooth) function J(v) closely
follows that used for a real-valued function f(X) of several variables, X = (z1,z2,...,zy).
We recall that. Say f has a local minimum at an interior point Xy of the set where f is
defined. For any vector Z € R" let

o(t) = f(Xo +t2).

Observe that f(Xo+tZ) > f(Xo) = ¢(0), that is, ¢(0) < (t) for all ¢ near zero. Thus
¢ has a local min at ¢t = 0 so its derivative at 0 is zero: ¢'(0) = 0 (this is the directional
derivative of f at X in the direction of the vector Z). But by the chain rule,

0=¢'(0) = Vf(Xo)- Z.



Because Z ia an arbitrary vector, this says that V f is orthogonal to all vectors so it must
be zero, that is, V(f(Xo) = 0.

We use the same procedure to find the minima of J(v) in equation (1). Say a function u
satisfying the boundary condition minimizes J. Let h(z,y) be any smooth function that is
zero on the boundary 9. Then for any real ¢ the function u(x,y) + th(z,y) also satisfies
the boundary conditions. Thus the function

o(t) == J(u+th) = // [[Vul? + 2tVu - Vh + £*|Vh|?] dz dy
Q

has a minimum at ¢t = 0. Therefore ¢’(0) = 0. That is,

//QVu-Vhdxdy:0 (3)

for any smooth function h that is zero on the boundary. Assuming the minimizer u is
smooth,
Vu-Vh=V-(hVu) — hAu,

where Au = V- Vu = ugz, +uy, is the Laplacian. Thus integrating by parts (the Divergence
Theorem), equation (3) implies that

/ /Q (Aw)h da dy = 0 (@)

for all h that are zero on 9. This implies that Au = 0 throughout © (Proof: say Au > 0
in a small disk @ C Q. Pick any h that is positive on this disk and zero outside it. But

then for this h we have
// (Au)hdxdy = // (Au)hdx dy > 0.
Q Q

contradicting equation (4). Thus, finding a minimizer of (1) gives a solution of the Laplace
equation (2) with the desired boundary values.

Riemann’s innovation was using the existence of a minimizer of (1) to prove the existence
of a solution of the boundary value problem (2). He call this Dirichlet’s Principle. Since in
(1) J(v) is bounded below (by zero), it is clear that J has an infimum among all functions
v satisfying the boundary condition. It is not at all clear that there is a twice differentiable
function u that actually minimizes J. To illustrate the difficulty Weierstrass gave an explicit
example of a related problem

1
Minimize J(v) := / 22" ?(z) dx
-1
for all v with v(—1) = —1 and v(1) = 1. Following his reasoning, we show that J have an
infimum but does not have a minimum. He considered the sequence of functions
1 if-1<z<-1/n,
vp(z) =<nz  if-1/n<x<1/n..
1 ifl/n<z<l1



By an easy calculation has J(v,) = 2/(3n) — 0. This shows that the inf J(v) = 0 (if you
prefer a smooth sequence of functions you can use v, (z) := tf;ﬁ]’f) However, if there is a
v with J(v) = 0 then v = 0, so v must be a constant— and that can’t satisfy the boundary
conditions. Thus this J has an inf but not a min.

Mathematicians generally believed the idea behind Riemann’s proof of the existence of a
solution to (2) — but there certainly was a gap in the proof. It took about 50 years to
develop the ideas such as compactness needed to understand the situation adequately.

Toy ExAMPLE: Here is a toy (but not obvious) example where the idea behind Dirichlet’s
Principle works immediately. Say you are seeking a solution (z,y) of the two equations

20(x* +y*) +y—1=0

5
@ +yH)+2°+2+2=0 (5)

Idea: find a function f(z,y) that has a local minimum somewhere and with the property
that equations are the equations f, = 0 and f, = 0, so they will be satisfied at this local
minimum.

Consider the function

flz,y) = (@ +*)? + ' + 22y — 20 — +4y — 3

Computing f and f,, except for a factor of 2, these are exactly the equations (5) we wanted
to solve. Thus, if we can show that f has a local minimum somewhere, then at least one
solution exists, namely (xq,yo)-

With this problem in mind, in Homework Set 2 Problem 4 you found a number R so that
if 22 + 92 > R? then f(x,y) > 1. Since the disk 2% + 3? < R? is compact, there is at least
one point (zg, yo) in this disk where f attains its minimum. Because f(0,0) = —3 < 1, this
point is not on the boundary of the disk so it is an interior point. Thus, at this point, the
gradient of f is zero, that is, fz(x0,y0) =0 and fy(xo,yo) = 0.
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