Math 508, Fall 2014

The Archimedean Property

DEFINITION An ordered field F has the Archimedean Property if, given any positive x and y in F there is an integer n > 0 so that nx > y.

Theorem The set of real numbers (an ordered field with the Least Upper Bound property) has the Archimedean Property.

This is the proof I presented in class. It is one of the standard proofs. The key is the following Lemma.

Lemma The set \mathbb{N} of positive integers $\mathbb{N} = \{0, 1, 2, ...\}$ is not bounded from above.

PROOF Reasoning by contradiction, assume \mathbb{N} is bounded from above. Since $\mathbb{N} \subset \mathbb{R}$ and \mathbb{R} has the least upper bound property, then \mathbb{N} has a least upper bound $\alpha \in \mathbb{R}$. Thus $n \leq \alpha$ for all $n \in \mathbb{N}$ and is the smallest such real number.

Consequently $\alpha - 1$ is *not* an upper bound for \mathbb{N} (if it were, since $\alpha - 1 < \alpha$, then α would not be the *least* upper bound). Therefore there is some integer k with $\alpha - 1 < k$. But then $\alpha < k + 1$. This contradicts that α is an upper bound for \mathbb{N} .

PROOF OF THE THEOREM Since x > 0, the statement that there is an integer n so that nx > y is equivalent to finding an n with n > y/x for some n, But if there is no such n then n < y/x for all integers n. That is, y/x would be an upper bound for the integers. This contradicts the Lemma.

REMARK Homework Set 2 will have an example of an ordered field that does not have the Archimedean property.

[Last revised: September 3, 2014]