Basic Definitions

In any metric space S :

- S is bounded if it is contained in some ball in \mathbb{R}^{n}.
- S is a neighborhood of p if S contains some open ball around P.
- A point p is a limit point of S if every neighborhood of p contains a point $q \in S$, where $q \neq p$.
- If $p \in S$ is not a limit point of S, then it is called an isolated point of S.
- S is closed if every limit point of S is a point of S.
- A point $p \in S$ is an interior point of S if S contains a neighborhood of p.
- S is open if every point of S is an interior point of S.
- Let S^{\prime} denote all of the limit points of S. Then the closure \bar{S} of S is the set $S \cup S^{\prime}$. It is the smallest closed set containing S and is thus the intersection of all the closed sets containing S.
- A subset $T \subset S$ is dense in S if every point of S is either in T or a limit point of T (or both).
- If S is a metric space and $E \subset S$, let E^{\prime} be the limit points of E. Then the closure of $E=E \cup E^{\prime}$. It is the smallest closed set that contains. It is also the intersection of all the closed sets that contain E.
- An open cover of S is a family of open sets $T_{\alpha} \subset T$ with the property that every point of S is in at least one of these open sets.
- A set $S \in \mathbb{R}$ with points p has measure zero if given any $\epsilon>0$ there is an open cover by open intervals V_{p} so that

$$
\sum_{p} \text { length of the } V_{p}<\epsilon \text {. }
$$

The basic example is any countable set $S=\left\{x_{1}, x_{2}, \ldots\right\} \in \mathbb{R}$. Let V_{1} be an open interval of length less than $\epsilon / 2$ containing x_{1}, V_{2} an open interval of length less than $\epsilon / 2^{2}$ containing $x_{2}, \ldots V_{k}$ an open interval of length less than $\epsilon / 2^{k}$ containing x_{k}, \ldots Of course these intervals may overlap. However, since we have a geometric series,

$$
\sum_{k} \text { length of the } V_{k}<\sum_{k=1}^{\infty} \frac{\epsilon}{2^{k}}=\epsilon .
$$

- A set S is compact if every open cover of S has a sub-cover consisting of a finite number of these open sets.
- E has the Bolzano-Weierstrass property if every infinite subset x_{1}, x_{2}, \ldots of points in E has at least one limit point p in E.
- In a metric space X (or any "topological space") a separation of X is s pair U, V ofnonempty disjoint open subsets of X whose union is X. The space X is connected if a separation does not exist.

Example: The subset $(0,2) \cup(2,3)$ in \mathbb{R} is not connected. The subset $(0,2) \cup[2,3)$ is connected.

Remark: For a subspace Y of a larger topological space X here is an alternate equivalent formulation (which the Rudin text uses).

If Y is a subset of X, a separation of Y is a pair of nonempty sets A and B whose union is Y, neither of which contains a limit point of the other. Y is connected if no separation of Y exists.

Example The following sets in the plane \mathbb{R}^{2}. The x-axis and the graph of $y=1 / x$ for $x>0$. It is not connected because neither piece contains a limit point of the other.

