
Math 508 Fall 2014 Jerry Kazdan

Compactness

In these notes we will assume all sets are in a metric
space X . These proofs are merely a rephrasing of this
in Rudin – but perhaps the differences in wording will
help.

Intuitive remark: a set is compact if it can be guarded
by a finite number of arbitrarily nearsighted police-
men.

Theorem A compact set K is bounded.

Proof Pick any point p ∈ K and let Bn(p) =
{x ∈ K : d(x, p) < n}, n = 1, 2, . . .. These open
balls cover K. By compactness, a finite number also
cover K. The largest of these is a ball that contains
K.

Theorem 2.34 A compact set K is closed.

Proof We show that the complement Kc = X−K
is open. Pick a point p 6∈ K. If q ∈ K, let Vq and
Wq be open balls around p and q of radius 1

2
d(p, q).

Observe that if x ∈ Wq then

d(q, p) ≤ d(q, x) + d(x, p) < 1
2
d(p, q) + d(x, p)

so d(x, p) > 1
2
d(p, q), that is, all the points in this
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ball are at least 1
2
d(p, q) from p .

By compactness, a finite number of them, Wq1
, . . . WqN

cover K. Look at the corresponding balls Vq1
, . . . VqN

.
They are all centered at p. The smallest (their in-
tersection) is a neighborhood of p that contains no
points of K.

Theorem 2.35 Closed subsets of compact sets are
compact.

Proof Say F ⊂ K ⊂ X where F is closed and
K is compact. Let {Vα} be an open cover of F .
Then F c is a trivial open cover of F c. Consequently
{F c}∪{Vα} is an open cover of K. By compactness
of K it has a finite sub-cover – which gives us a finite
sub-cover of F .

Theorem 2.38 Let In be a sequence of nested closed
intervals in R, so In ⊇ In+1, n = 1, 2, . . .. Then
∩∞

n=1In is not empty.

Proof Say In = {x ∈ R : an ≤ x ≤ bn}. The
nested property means

a1 ≤ an ≤ an+1 ≤ bn+1 ≤ bn ≤ b1.

Let a = sup an and b = inf bn. It is clear that
∩∞

n=1In = {a ≤ x ≤ b}.
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It is clear that this immediately extends to closed
cells (“rectangles”) in R

2 and R
k. We use it to show

Theorem 2.40 Closed and bounded intervals x ∈
R : {a ≤ x ≤ b} are compact.

Proof Idea: keep on dividing a ≤ x ≤ b in half
and use a microscope.

Say there is an open cover {Gα} that has no finite
sub-cover. Divide the interval in half. Then one (or
both) halves are closed sets with an open cover that
has no finite cover. Keep on repeating this. At the
nth step we have a closed interval In of length (b −
a)/2n where there is no finite sub-cover of our {Gα}.
By the previous theorem, the intersection of these
(nested) intervals ∩∞

n=1In has at point p. Since p is
contained in at least one of the {Gα} so there is some
interval around p. This shows that for n large In is
covered by one of the sets Gα. Contradiction.

Theorem 2.37 In any metric space, an infinite sub-
set E of a compact set K has a limit point in K.
[Bolzano-Weierstrass]

Proof Say no point of K is a limit point of E.
Then each point of K would have a neighborhood
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containing at most one point q of E. A finite number
of these neighborhoods cover K – so the set E must
be finite.

Theorem 2.41 Let {E ∈ R
k}. The following

properties are equivalent:
(a) E is closed and bounded.
(b) E is compact.
(c)Every infinite subset of E has a limit point in E.
[Bolzano-Weierstrass Property]

Proof We do this for sets E ∈ R
1. The ore general

case is then straightforward.
(a) implies (b): Since E is bounded it is contained
in some closed interval I . This interval is compact
(Theorem 2.40). But then E is a closed subset of a
compact set so it is compact (Theorem 2.35).

(b) implies (c): Theorem 2.37.

(c) implies (a). If E is not bounded, then for each
n = 1, 2, . . . there is a point xn ∈ E with |xn| > n.
This infinite set has no limit point, a contradiction.

If E ⊂ R is not closed then there is a point p ∈ R

which is a limit point of E but not in E. Thus, for
each n = 1, 2, 3, . . . there is a point xn ∈ E with
|xn − p| < 1/n. This set S = {x1, x2, . . .} has
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p 6∈ E as its only limit point. Contradiction.

Example Let K be a compact set in a metric space
X and let p ∈ X but p 6∈ K. Then there is a point
x0 in K that is closest to p. In other words, let
α = infx∈K d(x, p). then there is at least one point
x0 ∈ K with d(x0, p) = α,

Remark: There may be many such points, for
example if K is the unit circle x2 + y2 = 1 in the
plane and p = (0, 0), then every point on the circle
minimizes the distance to the origin.

Solution: For any n = 1, 2, . . . there is at least
one point xn ∈ K with d(xn, p) ≤ α + 1

n. If this
set {x1, x2, . . .} is finite (for instance if K only has a
finite number of points), pick the point closest to p.
If the set has infinite many points, by the Bolzano-
Weierstrass property it has a limit point q in K. This
is the desired point in K that is closest to p.

Example In ℓ2 the set of unit vectors e1 = (1, 0, 0, . . .), e2 =
(0, 1, 0, 0 . . .), . . . is closed and bounded but not com-
pact.
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