Compactness

In these notes we will assume all sets are in a metric space X. These proofs are merely a rephrasing of this in Rudin - but perhaps the differences in wording will help.
Intuitive remark: a set is compact if it can be guarded by a finite number of arbitrarily nearsighted policemen.

Theorem A compact set K is bounded.
Proof Pick any point $p \in K$ and let $B_{n}(p)=$ $\{x \in K: d(x, p)<n\}, n=1,2, \ldots$. These open balls cover K. By compactness, a finite number also cover K. The largest of these is a ball that contains K.

Theorem $2.34 A$ compact set K is closed. Proof We show that the complement $K^{c}=X-K$ is open. Pick a point $p \notin K$. If $q \in K$, let V_{q} and W_{q} be open balls around p and q of radius $\frac{1}{2} d(p, q)$. Observe that if $x \in W_{q}$ then

$$
d(q, p) \leq d(q, x)+d(x, p)<\frac{1}{2} d(p, q)+d(x, p)
$$

so $d(x, p)>\frac{1}{2} d(p, q)$, that is, all the points in this
ball are at least $\frac{1}{2} d(p, q)$ from p.
By compactness, a finite number of them, $W_{q_{1}}, \ldots W_{q_{N}}$ cover K. Look at the corresponding balls $V_{q_{1}}, \ldots V_{q_{N}}$. They are all centered at p. The smallest (their intersection) is a neighborhood of p that contains no points of K.

Theorem 2.35 Closed subsets of compact sets are compact.
Proof Say $F \subset K \subset X$ where F is closed and K is compact. Let $\left\{V_{\alpha}\right\}$ be an open cover of F. Then F^{c} is a trivial open cover of F^{c}. Consequently $\left\{F^{c}\right\} \cup\left\{V_{\alpha}\right\}$ is an open cover of K. By compactness of K it has a finite sub-cover - which gives us a finite sub-cover of F.

Theorem 2.38 Let I_{n} be a sequence of nested closed intervals in \mathbb{R}, so $I_{n} \supseteq I_{n+1}, n=1,2, \ldots$ Then $\cap_{n=1}^{\infty} I_{n}$ is not empty.
Proof Say $I_{n}=\left\{x \in \mathbb{R}: a_{n} \leq x \leq b_{n}\right\}$. The nested property means

$$
a_{1} \leq a_{n} \leq a_{n+1} \leq b_{n+1} \leq b_{n} \leq b_{1}
$$

Let $a=\sup a_{n}$ and $b=\inf b_{n}$. It is clear that $\cap_{n=1}^{\infty} I_{n}=\{a \leq x \leq b\}$.

It is clear that this immediately extends to closed cells ("rectangles") in \mathbb{R}^{2} and \mathbb{R}^{k}. We use it to show

Theorem 2.40 Closed and bounded intervals $x \in$ $\mathbb{R}:\{a \leq x \leq b\}$ are compact.
Proof Idea: keep on dividing $a \leq x \leq b$ in half and use a microscope.
Say there is an open cover $\left\{G_{\alpha}\right\}$ that has no finite sub-cover. Divide the interval in half. Then one (or both) halves are closed sets with an open cover that has no finite cover. Keep on repeating this. At the $n^{\text {th }}$ step we have a closed interval I_{n} of length ($b-$ $a) / 2^{n}$ where there is no finite sub-cover of our $\left\{G_{\alpha}\right\}$. By the previous theorem, the intersection of these (nested) intervals $\cap_{n=1}^{\infty} I_{n}$ has at point p. Since p is contained in at least one of the $\left\{G_{\alpha}\right\}$ so there is some interval around p. This shows that for n large I_{n} is covered by one of the sets G_{α}. Contradiction.
Theorem 2.37 In any metric space, an infinite subset E of a compact set K has a limit point in K. [Bolzano-Weierstrass]
Proof Say no point of K is a limit point of E. Then each point of K would have a neighborhood
containing at most one point q of E. A finite number of these neighborhoods cover K - so the set E must be finite.

Theorem 2.41 Let $\left\{E \in \mathbb{R}^{k}\right\}$. The following properties are equivalent:
(a) E is closed and bounded.
(b) E is compact.
(c)Every infinite subset of E has a limit point in E. [Bolzano-Weierstrass Property]
Proof We do this for sets $E \in \mathbb{R}^{1}$. The ore general case is then straightforward.
(a) implies (b): Since E is bounded it is contained in some closed interval I. This interval is compact (Theorem 2.40). But then E is a closed subset of a compact set so it is compact (Theorem 2.35). (b) implies (c): Theorem 2.37.
(c) implies (a). If E is not bounded, then for each $n=1,2, \ldots$ there is a point $x_{n} \in E$ with $\left|x_{n}\right|>n$. This infinite set has no limit point, a contradiction. If $E \subset \mathbb{R}$ is not closed then there is a point $p \in \mathbb{R}$ which is a limit point of E but not in E. Thus, for each $n=1,2,3, \ldots$ there is a point $x_{n} \in E$ with $\left|x_{n}-p\right|<1 / n$. This set $S=\left\{x_{1}, x_{2}, \ldots\right\}$ has
$p \notin E$ as its only limit point. Contradiction.
Example Let K be a compact set in a metric space X and let $p \in X$ but $p \notin K$. Then there is a point x_{0} in K that is closest to p. In other words, let $\alpha=\inf _{x \in K} d(x, p)$. then there is at least one point $x_{0} \in K$ with $d\left(x_{0}, p\right)=\alpha$,
Remark: There may be many such points, for example if K is the unit circle $x^{2}+y^{2}=1$ in the plane and $p=(0,0)$, then every point on the circle minimizes the distance to the origin.
Solution: For any $n=1,2, \ldots$ there is at least one point $x_{n} \in K$ with $d\left(x_{n}, p\right) \leq \alpha+\frac{1}{n}$. If this set $\left\{x_{1}, x_{2}, \ldots\right\}$ is finite (for instance if K only has a finite number of points), pick the point closest to p. If the set has infinite many points, by the BolzanoWeierstrass property it has a limit point q in K. This is the desired point in K that is closest to p.

Example In ℓ_{2} the set of unit vectors $e_{1}=(1,0,0, \ldots), e_{2}=$ $(0,1,0,0 \ldots), \ldots$ is closed and bounded but not compact.

