Problem Set 10

Due: Thurs. Nov. 20, 2014. Late papers will be accepted until 1:00 PM Friday.
This week. Please read the material http://www.math.upenn.edu/~kazdan/508F14/Notes/K-F-contracting-maps.pdf on contracting mappings.

1. Let S and T be linear spaces and $L: S \rightarrow T$ be a linear map. Say V_{1} and V_{2} are (distinct!) solutions of the equation $L X=Y_{1}$ while W is a solution of $L X=Y_{2}$. Answer the following in terms of V_{1}, V_{2}, and W.
a) Find some solution of $L X=2 Y_{1}-7 Y_{2}$.
b) Find another solution (other than W) of $L X=Y_{2}$.
2. Let $f(x) \in C([a, b])$. Show that

$$
\exp \left[\frac{1}{b-a} \int_{a}^{b} f(x) d x\right] \leq \frac{1}{b-a} \int_{a}^{b} \exp [f(x)] d x
$$

[Hint: Use the inequality $e^{u} \geq 1+u$ where $u=f-\bar{f}$. Here $\bar{f}=$ average of $f=$ $\frac{1}{b-a} \int_{a}^{b} f(x) d x$.]
3. Let f be continuous on the interval $[0,1]$. Show that $\lim _{n \rightarrow \infty} \int_{0}^{1} f(x) \sin n x d x=0$.
4. Determine which of the following function sequences of functions converge pointwise or uniformly:
a) $f_{n}(x)=\frac{\sin x}{n}, x \in \mathbb{R}$
b) $f_{n}(x)=\frac{1}{1+n x}, x \in[0,1]$
c) $f_{n}(x)=\frac{x}{1+n x^{2}}, x \in \mathbb{R}$.
5. a) If $f_{n} \rightarrow f$ and $g_{n} \rightarrow g$ pointwise in $C([0,1])$. is it true that $f_{n} \cdot g_{n} \rightarrow f \cdot g$ pointwise?
b) If $f_{n} \rightarrow f$ and $g_{n} \rightarrow g$ uniformly in $C([0,1])$, is it true that $f_{n} \cdot g_{n} \rightarrow f \cdot g$ uniformly?
6. a) If $f:[0,1] \rightarrow \mathbb{R}$ is a continuous function with the property that $\int_{0}^{1} f(x) g(x) d x=0$ for all continuous functions g, prove that $f(x)=0$ for all $x \in[0,1]$.
b) If $f:[0,1] \rightarrow \mathbb{R}$ is a continuous function with the property that $\int_{0}^{1} f(x) g(x) d x=0$ for all C^{1} functions g that satisfy $g(0)=g(1)=0$, must it be true that $f(x)=0$ for all $x \in[0,1]$? Proof or counterexample.
7. The maps (a) $x \mapsto x+\frac{1}{x}:[1, \infty] \rightarrow[1, \infty], \quad$ (b) $x \mapsto \frac{x}{2}:(0,1] \rightarrow(0,1]$ have no fixed points.
Which conditions of the Contracting Map Theorem are not satisfied in these examples?
8. Consider $f(x):=\sum_{k=1}^{\infty} \frac{\sin k x}{1+k^{4}}$.
a) For which real x is f continuous?
b) Is f differentiable? Why?
9. Let a_{n} be a bounded sequence of complex numbers and $f(z)=\sum_{n=1}^{\infty} \frac{a_{n}}{n^{z}}$, where $z=x+i y$. If $c>1$, show that this series converges absolutely and uniformly in the half-plane $\{z=x+i y \in \mathbb{C} \mid x \geq c\}$.
10. Show that the sequence of functions $f_{n}(x):=n^{3} x^{n}(1-x)$ does not converge uniformly on $[0,1]$.
11. For each of the following give an example of a sequence of continuous functions. Justify your assertions. [A clear sketch may be adequate - as long as it is convincing].
a) $f_{n}(x)$ that converge to zero at every $x, 0 \leq x \leq 1$, but not uniformly.
b) $g_{n}(x)$ that converge to zero at every $x, 0 \leq x \leq 1$, but $\int_{0}^{1} g_{n}(x) d x \geq 1$.
c) $h_{n}(x)$ converge to zero uniformly for $0 \leq x<\infty$, but $\int_{0}^{\infty} h_{n}(x) d x \geq 1$.

Bonus Problem

[Please give this directly to Professor Kazdan]
B-1 [HöLDER'S inequality] Let $p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$. In class we proved that

$$
s t \leq \frac{s^{p}}{p}+\frac{t^{q}}{q} \quad \text { for all } \quad s, t>0
$$

a) Use this to show that for any complex numbers a_{k}, b_{k}

$$
\sum_{k=1}^{n}\left|a_{k} b_{k}\right| \leq\left[\sum_{k=1}^{n}\left|a_{k}\right|^{p}\right]^{1 / p}\left[\sum_{k=1}^{n}\left|b_{k}\right|^{q}\right]^{1 / q} .
$$

[SugGestion: First do the special case $\left[\sum_{k=1}^{n}\left|a_{k}\right|^{p}\right]^{1 / p}=1$ and $\left[\sum_{k=1}^{n}\left|b_{k}\right|^{q}\right]^{1 / q}=$ 1. Then reduce the general case to this special case.] If $p=q=1 / 2$ this is the Schwarz inequality.
b) Similarly, show that for any continuous functions f, g

$$
\int_{a}^{b}|f(x) g(x)| d x \leq\left[\int_{a}^{b}|f(x)|^{p} d x\right]^{1 / p}\left[\int_{a}^{b}|g(x)|^{q} d x\right]^{1 / q} .
$$

c) Let $p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$. and let $X:=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ and $f \in C([a, b])$. Use Hölder's inequality (above) to prove the triangle inequality for the norms

$$
\|X\|_{p}:=\left[\sum_{k=1}^{n}\left|x_{k}\right|^{p}\right]^{1 / p} \quad \text { and } \quad\|f\|_{p}:=\left[\int_{a}^{b}|f(x)|^{p} d x\right]^{1 / p} .
$$

B-2 (For those who have studied rings). Let \mathcal{C} be the ring of continuous functions on the interval $0 \leq x \leq 1$.
a) If $0 \leq c \leq 1$, show that the subset $\{f \in \mathcal{C} \mid f(c)=0\}$ is a maximal ideal.
b) Show that every maximal ideal in \mathcal{C} has this form.
[Last revised: November 14, 2014]

