Problem Set 11

DuE: Tues. Dec.. 2, 2014. Late papers will be accepted until 1:00 PM Wednesday.

This week. Please read pages $154-160,174-185$ in the Rudin text and the following Notes on Convolution: http://www.math.upenn.edu/~kazdan/508F10/convolution.pdf

- I will have my usual office hours on Wednesday Nov. 26.
- No recitation Wednesday, Nov. 26.

1. Let X and Y be linear spaces and $L: X \rightarrow Y$ be a linear map.

Say x_{1} and x_{2} are particular solutions of the equations $L x=y_{1}$ and $L x=y_{2}$, respectively, while $z \neq 0$ is a solution of the homogeneous equation $L z=0$. Answer the following in terms of x_{1}, x_{2}, and z .
a) Find some solution of $L x=3 y_{1}$.
b) Find some solution of $L x=-5 y_{2}$.
c) Find some solution of $L x=3 y_{1}-5 y_{2}$.
d) Find another solution (other than z and 0) of the homogeneous equation $L x=0$.
e) Find two solutions of $L x=y_{1}$.
f) Find another solution of $L x=3 y_{1}-5 y_{2}$.
2. Let $f(x)=\frac{\sin x}{x}$ for $x \geq 1$. Do the following improper integrals exist - and why?
a). $\int_{0}^{\infty} f(x) d x$
b). $\int_{0}^{\infty}|f(x)| d x$
3. The Gamma function is defined by $\Gamma(x):=\int_{0}^{\infty} e^{-t} t^{x-1} d t$.
a) For which real x does this improper integral converge?
b) Show that $\Gamma(x+1)=x \Gamma(x)$ and deduce that $\Gamma(n+1)=n$! for any integer $n \geq 0$.
4. Let $f \in C([0, \infty))$ and assume that $f(x) \geq 0$ for all $x \geq 0$. If the improper integral $\int_{0}^{\infty} f(x) d x$ exists, does this imply that f must be bounded, that is, for some constant M, we have $0 \leq f(x)<M$ for all $x \geq 0$? Give a proof or find a counterexample.
5. Let $K(x, y)$ be a continuous function of x and y for x and y in the interval $[0,1]$ and let

$$
h(x)=\int_{0}^{1} K(x, y) d y .
$$

Show that $h(x)$ is a continuous function of x for $x \in[0,1]$.
6. In class, we showed that iff $f(x)$ and $K(x, y)$ are continuous function of x and y for x and y in the interval $0 \leq x \leq 1$, AND if $|\lambda|$ is sufficiently small, then the integral equation

$$
u(x)=f(x)+\lambda \int_{0}^{1} K(x, y) u(y) d y
$$

has a unique solution $u \in C([0,1])$.
By looking at the special case where $K(x, y) \equiv 1$, and $f(x) \equiv 2$, show that the assumption that λ is sufficiently small cannot be completely eliminated.
7. In class we showed that if $A(t)$ is a square matrix and $f(t)$ a vector with both continuous for $|t| \leq a$, then there is some $b, 0<b \leq a$ so that the initial value problem

$$
\frac{d x}{d t}=A x, \quad \text { with } \quad x(0)=x_{0}
$$

has a unique solution. Show that one can sharpen this to allowing $b=a$. One approach is to use the device that to find a fixed point of a map T, it is often enough to show that some power of T, say T^{k} is contracting.
8. Let $\varphi_{n}(t)$ be a sequence of smooth real-valued functions with the properties
(a) $\varphi_{n}(t) \geq 0$,
(b) $\varphi_{n}(t)=0$ for $|t| \geq 1 / n$,
(c) $\int_{\pi}^{\pi} \varphi_{n}(t) d t=1$.

Note: because of (b), this integral is only over $-1 / n \leq t \leq 1 / n$.
Extend φ to all of \mathbb{R} so that it is periodic with period 2π.
Assume $f(x) \in C(\mathbb{R})$ and periodic with period 2π. Define

$$
\begin{equation*}
f_{n}(x):=\int_{-\pi}^{\pi} f(x-t) \varphi_{n}(t) d t \tag{1}
\end{equation*}
$$

Show that $f_{n}(x)$ is 2π periodic and converges uniformly to $f(x)$ for all $x \in[-\pi, \pi]$.
[SUGGESTION: Use $f(x)=f(x)\left(\int_{-\pi}^{\pi} \varphi_{n}(t) d t\right)=\int_{-\pi}^{\pi} f(x) \varphi_{n}(t) d t$. Also, note explicitly where you use the uniform continuity of f].

Remark: For 2π periodic continuous functions f and g, we can define $f * g$ by the rule

$$
(f * g)(x)=\int_{-\pi}^{\pi} f(x-t) g(t) d t
$$

By a simple change of variable one sees that $f * g=g * f$. Since in equation (1) the φ_{n} are smooth, one can show that the approximations f_{n} are also smooth (see the Theorem on page 1 of the Convolution notes mentioned at the top of this assignment). Thus, this proves that you can approximate a continuous 2π periodic function uniformly by a smooth 2π periodic function.

Bonus Problems

[Please give this directly to Professor Kazdan]
B-1 In the the Integral Equation Example on page 75 of the notes
http://www.math.upenn.edu/~kazdan/508F14/Notes/K-F-contracting-maps.pdf
they prove the existence of a solution of this integral equation by showing some power of a map A is contracting. Give an alternate proof of the same result by showing that if one uses the modified uniform norm for $u \in C([a, b])$:

$$
\|u\|_{*}=\max _{[a, b]}\left|u(x) e^{-\gamma x}\right| .
$$

a) If $\|u\|$ is the usual uniform norm on $[a, b]$, show there are constants C_{1} and C_{2} so that for any bounded function u

$$
C_{1}\|u\| \leq\|u\|_{*} \leq C_{2}\|u\| .
$$

Thus both of these norms have the same convergent sequences.
b) Show that by choosing γ appropriately(depending on λ, (b-a) and M) that A itself is contracting and hence has a fixed point.

B-2 If $\varphi: \mathbb{R} \rightarrow \mathbb{R}$ is continuous with period P, so $\varphi(x+P)=\varphi(x)$ for all real x. Show that

$$
\lim _{\lambda \rightarrow \infty} \int_{0}^{1} f(x) \varphi(\lambda x) d x=\bar{\varphi} \int_{0}^{1} f(x) d x
$$

where $\bar{\varphi}:=\frac{1}{P} \int_{0}^{P} \varphi(t) d t$ is the average of φ over one period. [This generalizes both HW9 \#10 and HW10 \#3.]
[Last revised: September 11, 2015]

