Problem Set 11

DUE: Tues. Dec.. 2, 2014. Late papers will be accepted until 1:00 PM Wednesday.

This week. Please read pages 154-160, 174-185 in the Rudin text and the following Notes on Convolution: http://www.math.upenn.edu/~kazdan/508F10/convolution.pdf

- I will have my usual office hours on Wednesday Nov. 26.
- No recitation Wednesday, Nov. 26.
- 1. Let X and Y be linear spaces and $L: X \to Y$ be a linear map.

Say x_1 and x_2 are particular solutions of the equations $Lx = y_1$ and $Lx = y_2$, respectively, while $z \neq 0$ is a solution of the homogeneous equation Lz = 0. Answer the following in terms of x_1 , x_2 , and z.

- a) Find some solution of $Lx = 3y_1$.
- b) Find some solution of $Lx = -5y_2$.
- c) Find some solution of $Lx = 3y_1 5y_2$.
- d) Find another solution (other than z and 0) of the homogeneous equation Lx = 0.
- e) Find two solutions of $Lx = y_1$.
- f) Find another solution of $Lx = 3y_1 5y_2$.

2. Let $f(x) = \frac{\sin x}{x}$ for $x \ge 1$. Do the following improper integrals exist – and why?

a).
$$\int_0^\infty f(x) \, dx \qquad b). \ \int_0^\infty |f(x)| \, dx$$

3. The Gamma function is defined by $\Gamma(x) := \int_0^\infty e^{-t} t^{x-1} dt$.

- a) For which real x does this improper integral converge?
- b) Show that $\Gamma(x+1) = x\Gamma(x)$ and deduce that $\Gamma(n+1) = n!$ for any integer $n \ge 0$.
- 4. Let $f \in C([0,\infty))$ and assume that $f(x) \ge 0$ for all $x \ge 0$. If the improper integral $\int_0^\infty f(x) dx$ exists, does this imply that f must be bounded, that is, for some constant M, we have $0 \le f(x) < M$ for all $x \ge 0$? Give a proof or find a counterexample.

5. Let K(x, y) be a continuous function of x and y for x and y in the interval [0, 1] and let

$$h(x) = \int_0^1 K(x, y) \, dy.$$

Show that h(x) is a continuous function of x for $x \in [0, 1]$.

6. In class, we showed that iff f(x) and K(x, y) are continuous function of x and y for x and y in the interval $0 \le x \le 1$, AND if $|\lambda|$ is sufficiently small, then the integral equation

$$u(x) = f(x) + \lambda \int_0^1 K(x, y) u(y) \, dy$$

has a unique solution $u \in C([0, 1])$.

By looking at the special case where $K(x, y) \equiv 1$, and $f(x) \equiv 2$, show that the assumption that λ is sufficiently small cannot be completely eliminated.

7. In class we showed that if A(t) is a square matrix and f(t) a vector with both continuous for $|t| \leq a$, then there is some $b, 0 < b \leq a$ so that the initial value problem

$$\frac{dx}{dt} = Ax, \quad \text{with} \quad x(0) = x_0$$

has a unique solution. Show that one can sharpen this to allowing b = a. One approach is to use the device that to find a fixed point of a map T, it is often enough to show that some power of T, say T^k is contracting.

8. Let $\varphi_n(t)$ be a sequence of smooth real-valued functions with the properties

(a)
$$\varphi_n(t) \ge 0$$
, (b) $\varphi_n(t) = 0$ for $|t| \ge 1/n$, (c) $\int_{\pi}^{\pi} \varphi_n(t) dt = 1$.

Note: because of (b), this integral is only over $-1/n \le t \le 1/n$.

Extend φ to all of \mathbb{R} so that it is periodic with period 2π .

Assume $f(x) \in C(\mathbb{R})$ and periodic with period 2π . Define

$$f_n(x) := \int_{-\pi}^{\pi} f(x-t)\varphi_n(t) \, dt.$$
 (1)

Show that $f_n(x)$ is 2π periodic and converges uniformly to f(x) for all $x \in [-\pi, \pi]$. [SUGGESTION: Use $f(x) = f(x) \left(\int_{-\pi}^{\pi} \varphi_n(t) dt \right) = \int_{-\pi}^{\pi} f(x) \varphi_n(t) dt$. Also, note *explicitly* where you use the uniform continuity of f]. REMARK: For 2π periodic continuous functions f and g, we can define f * g by the rule

$$(f * g)(x) = \int_{-\pi}^{\pi} f(x - t)g(t) dt$$

By a simple change of variable one sees that f * g = g * f. Since in equation (1) the φ_n are smooth, one can show that the approximations f_n are also smooth (see the Theorem on page 1 of the Convolution notes mentioned at the top of this assignment). Thus, this proves that you can approximate a continuous 2π periodic function uniformly by a smooth 2π periodic function.

Bonus Problems

[Please give this directly to Professor Kazdan]

B-1 In the Integral Equation Example on page 75 of the notes

http://www.math.upenn.edu/~kazdan/508F14/Notes/K-F-contracting-maps.pdf they prove the existence of a solution of this integral equation by showing some power of a map A is contracting. Give an alternate proof of the same result by showing that if one uses the modified uniform norm for $u \in C([a, b])$:

$$||u||_* = \max_{[a,b]} |u(x)e^{-\gamma x}|.$$

a) If ||u|| is the usual uniform norm on [a, b], show there are constants C_1 and C_2 so that for any bounded function u

$$C_1 \|u\| \le \|u\|_* \le C_2 \|u\|.$$

Thus both of these norms have the same convergent sequences.

b) Show that by choosing γ appropriately(depending on λ , (b-a) and M) that A itself is contracting and hence has a fixed point.

B-2 If $\varphi \colon \mathbb{R} \to \mathbb{R}$ is continuous with period P, so $\varphi(x+P) = \varphi(x)$ for all real x. Show that

$$\lim_{\lambda \to \infty} \int_0^1 f(x) \varphi(\lambda x) \, dx = \overline{\varphi} \int_0^1 f(x) \, dx,$$

where $\overline{\varphi} := \frac{1}{P} \int_0^P \varphi(t) dt$ is the average of φ over one period. [This generalizes both HW9 #10 and HW10 #3.]

[Last revised: September 11, 2015]