Problem Set 1

DuE: Tues. Sept. 9, 2014. Late papers will be accepted until 1:00 PM Wednesday.
LATEX If you will be writing many documents that contain equations, it is wise to learn (and use) ${ }^{[4 T} T_{E} \mathrm{X}$. It is available on Windows, Macs, and Linux - and is free. See http://www.math.upenn.edu/~kazdan/202F13/tex/. For some students, this might be the most useful item you learn in this course.

This week. Please read all of Chapter 1 and Sections 2.1-2.14 in Chapter 2. of the Rudin text.

1. (Rudin, p. $21 \# 1$) If $r \neq 0$ is rational and x is irrational, prove that $r+x$ and $r x$ are irrational.
2. (Rudin, p. $22 \# 2$) Prove that there is no rational number whose square is 12 .
3. (Rudin, p. $22 \# 3$) Prove Proposition 1.15, i.e., show that the axioms of multiplication imply the following statements:
a) If $x \neq 0$ and $x y=x z$ then $y=z$.
b) If $x \neq 0$ and $x y=x$ then $y=1$.
c) If $x \neq 0$ and $x y=1$, then $y=1 / x$.
d) If $x \neq 0$ then $1 /(1 / x)=x$.
4. (Rudin, p. $23 \# 17$) For $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$ with the Euclidean distance, prove that

$$
|\mathbf{x}+\mathbf{y}|^{2}+|\mathbf{x}-\mathbf{y}|^{2}=2|\mathbf{x}|^{2}+2|\mathbf{y}|^{2}
$$

and interpret this geometrically as a statement about a parallelogram.
Hint: Use

$$
|\mathbf{x}+\mathbf{y}|^{2}=(x+y) \cdot(x+y)=x \cdot x+2 x \cdot y+y \cdot y
$$

5. (Rudin, p. $23 \# 19$) Suppose \mathbf{a}, \mathbf{b}, and \mathbf{x} are points in \mathbb{R}^{k}. Show that

$$
|\mathbf{x}-\mathbf{a}|=2|\mathbf{x}-\mathbf{b}|
$$

is satisfied if and only if \mathbf{x} lies on some sphere $|\mathbf{x}-\mathbf{c}|=r$. [You should find $\mathbf{c} \in \mathbb{R}^{k}$ and $r>0$ in terms of \mathbf{a} and \mathbf{b}.].
[Hint: See the Hint for Problem 4 and complete the square:

$$
\left.\langle\mathbf{x}, \mathbf{x}\rangle-2\langle\mathbf{c}, \mathbf{x}\rangle+\alpha=|\mathbf{x}-\mathbf{c}|^{2}+\left(\alpha-|\mathbf{c}|^{2}\right) .\right]
$$

Generalization: For real $\lambda>0, \lambda \neq 1$, consider the points $\mathbf{x} \in \mathbb{R}^{k}$ that satisfy

$$
|\mathbf{x}-\mathbf{a}|=\lambda|\mathbf{x}-\mathbf{b}|
$$

Show that these points lie on a sphere. (Thus find the center and radius of this sphere in terms of \mathbf{a}, \mathbf{b} and λ. [You can reduce the case $\lambda>1$ to the case $0<\lambda<1$ by letting $\lambda=1 / \mu]$.
What if $\lambda=1$?
6. Let $S_{1}, S_{2}, S_{3}, \ldots$ be finite sets and $A=\cup_{j=1}^{\infty} S_{j}$. Show that A is countable (or finite). In other words, a countable union of finite sets is countable (or finite). [A is finite, for instance, if all the sets S_{j} are subsets of, say, S_{1}].
7. (Rudin, p. 43 \#2) A complex number is algebraic if it is a root of a polynomial $a_{0} z^{n}+$ $\cdots+a_{n}$ whose coefficients are all integers. Prove that the set of all algebraic numbers is countable. [Hint: For every positive integer N there are only finitely many equations with $n+\left|a_{0}\right|+\cdots+\left|a_{n}\right|=N$.]
8. (Rudin, p. $22 \# 6$) The point of this problem is, for any real $b>1$ and any real x to define b^{x}. So far we can only compute b^{x} for the special cases $x=n$ and for $x=1 / n$, where $n=1,2, \ldots$. First we extend this to rational x and then to all real x.
Fix $b>1$. Let m, n, p, q be integers with $n>0, q>0$. Define $\left.b^{p / q}=\left(b^{1 / q}\right)\right)^{p}$. This equals $\left(b^{p}\right)^{1 / q}$ since

$$
\left[b^{p / q}\right]^{q}=\left[\left(b^{1 / q}\right)^{p}\right]^{q}=\left(b^{1 / q}\right)^{p q}=\left(b^{1 / q}\right)^{q p}=b^{p} .
$$

Now take the $q^{\text {th }}$ root of both sides.
Set $r=m / n=p / q$.
a) Prove that $\left(b^{m}\right)^{1 / n}=\left(b^{p}\right)^{1 / q}$. Thus, it makes sense to define $b^{r}=\left(b^{m}\right)^{1 / n}$.

SOLUTION: $b^{p / q}=b^{p(m /(n p)}=b^{m / n}$
b) If x and y are rational, prove that $b^{x+y}=b^{x} b^{y}$.

Solution:: Note that for any integers n and k and any real $c>0$ then $c^{n+k}=c^{n} c^{k}$. Say $x=p / q$ and $y=r / s$. Then

$$
b^{x+y}=b^{(p s+q r) /(q s)}=\left(b^{1 / q s}\right)^{p s}\left(b^{1 / q s}\right)^{q r}=b^{p / q} b^{r / s}=b^{x} b^{y} .
$$

If $b>0$, we define $b^{-x}=1 / b^{x}$
c) If x is real, define $B(x)$ to be the set of all numbers b^{t}, where t is rational and $t \leq x$. Prove that for r rational

$$
b^{r}=\sup B(r) .
$$

Hence it makes sense to define $b^{x}=\sup B(x)$ for all real x.
d) With this definition, prove that for all real $x, y: b^{x+y}=b^{x} b^{y}$.
9. (Rudin, P. $43 \# 3$) Prove there exist real numbers that are not algebraic.
10. (Rudin, P. 43 \#4) Is the set of all irrational real numbers countable? Why?
[Last revised: September 8, 2014]

