Problem Set 3

Due: Thurs. Sept. 18, 2014. Late papers will be accepted until 1:00 PM Friday.
This week. Please re-read all of Chapter 2 and the first part of Chapter 3 of the Rudin text.
Revision Note: This revised version of Homework Set 3 has clarifications and hints for problems \#6, 10, and 11. Problem 7 is solved in the Class Notes on Compactness and Problem 12 is now a Bonus Problem.

1. Give an example of closed sets $V_{j} \subset \mathbb{R}$ so that $\cup_{j=1}^{\infty} V_{j}$ is open.
2. (Rudin, p. 43 \#5) Construct a bounded set of real numbers with exactly three limit points.
3. For the following subsets in an indicated metric space determine the interior and boundary points; describe the closure.
a) $(0,1] \subset \mathbb{R}$.
b) $R^{2} \subset \mathbb{R}^{3}$ (the coordinate plane $z=0$).
c) $\mathbb{Q} \subset \mathbb{R}$.
d) The graph of the function $y=\left\{\begin{array}{lll}\sin \frac{1}{x}, & \text { if } \quad x \neq 0 \\ 0 & \text { if } & x=0\end{array}\right.$.
4. Which of the following sets are compact - and why?
a) $[0,1] \subset \mathbb{R}$.
b) $X=\{0\} \cup\left\{1, \frac{1}{2}, \frac{1}{3}, \ldots, \frac{1}{n}, \ldots\right\} \subset \mathbb{R}$.
c) $[0,1] \backslash \mathbb{Q} \subset \mathbb{R}$.
5. Define the set $S \in \mathbb{R}$ consisting of the points

$$
x_{k}=\frac{9}{10}+\frac{9}{10^{2}}+\frac{9}{10^{3}}+\cdots+\frac{9}{10^{k}}
$$

and let $c=\sup S$. Show that $c=1$.
6. Let $\mathcal{M}_{k, n}$ denote the set of $k \times n$ real matrices. If $A, B \in \mathcal{M}_{k, n}$, let

$$
\langle A, B\rangle=\operatorname{trace}\left(A B^{t}\right)
$$

(here B^{t} is the transpose of B so $A B^{t}$ is a square matrix - and its trace is the sum of the diagonal elements).
a) Show that this has all of the properties of an inner product (see Page 2 of http://www.math.upenn.edu/~kazdan/508F14/Notes/Sep4-14.pdf)
b) Define $|A|^{2}=\langle A, A\rangle$ and the metric by $d(A, B):=|A-B|$. Show this has all the properties a metric.
c) If A and B are $n \times n$ matrices, show that $|A B| \leq|A||B|$.

Hint: The $i j$ element of $A B$ is the inner product of the $i^{\text {th }}$ row of A with the $j^{\text {th }}$ column of B.
Alternate: Prove and use that for any i and j

$$
\left[\sum_{k} a_{i k} b_{k j}\right]^{2} \leq\left[\sum_{k} a_{i k}^{2}\right]\left[\sum_{k} b_{k j}^{2}\right] .
$$

d) Use the above to show that $\left|A^{\ell}\right| \leq|A|^{\ell}$ for any positive integer ℓ. Give an example where strict inequality can occur.
7. Let K be a compact subset of \mathbb{R}^{n}, and suppose that $x \in \mathbb{R}^{n}$ does not lie in K. Let $d=\inf \{d(x, y) \mid y \in K\}$, where $d(x, y)$ is the distance from x to y. Prove that there is a point $z \in K$ such that $d(x, z)=d$.
8. Let (X, d) be a metric space, and let $A, B \subset X$ be two subsets. Define the distance between A and B to be

$$
\begin{equation*}
\operatorname{dist}(A, B):=\inf _{\substack{x \in A \\ y \in B}} d(x, y) \tag{1}
\end{equation*}
$$

Give an example (with proof) of a metric space (X, d) and two closed disjoint non-empty subsets A, B in X such that $\operatorname{dist}(A, B)=0$.
9. Let $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ be a sequence of points in the euclidean plane \mathbb{R}^{2} that contains every point with rational coordinates. Let $r_{n}>0$ be a sequence of positive real numbers such that $\sum_{n} r_{n}=1$, and consider the set

$$
U=\cup_{n \in \mathbb{N}} D\left(x_{n}, r_{n}\right),
$$

where $D(x, r)=\left\{y \in \mathbb{R}^{2}:|y-x|<r\right\}$ is the open disc centered at x with radius r.
a) Prove that U is an open and dense subset of \mathbb{R}^{2}.
b) Prove that if $L \subset \mathbb{R}^{2}$ is any straight line, then L cannot be contained in U.
10. Product Topology. If A and B are two sets, then the product set $A \times B$ is the set of all pairs of points (a, b) where $a \in A$ and $b \in B$. For instance $\mathbb{R}^{2}=\mathbb{R} \times \mathbb{R}$ and $\mathbb{R}^{3}=\mathbb{R}^{2} \times \mathbb{R}$.

Let $\left(E_{1}, d_{1}\right)$ and $\left(E_{2}, d_{2}\right)$ be two metric spaces. Define a distance on $E_{1} \times E_{2}$ by

$$
d\left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right)=d_{1}\left(x_{1}, y_{1}\right)+d_{2}\left(x_{2}, y_{2}\right)
$$

a) (Warmup) View \mathbb{R}^{2} as $\mathbb{R} \times \mathbb{R}$. What is the distance from the point $(1,2)$ to the origin $(0,0)$? Sketch the "disk" centered at the origin with radius r.
b) More gnerally, show that $U \subset E_{1} \times E_{2}$ is open if and only if for each point $\left(u_{1}, u_{2}\right) \in$ U, there exist U_{1} and U_{2} open in E_{1} and E_{2} respectively, with $\left(u_{1}, u_{2}\right) \in U_{1} \times U_{2}$ and $U_{1} \times U_{2} \subset U$. [Hint: First do this for $\mathbb{R} \times \mathbb{R}$.]
11. This problem introduces the p-adic topology on the rational numbers \mathbb{Q}. It is used in number theory. In thinking about this question, think of a particular p, say the 3 -adic topology.

Let p be a fixed prime number such as 3 (prime numbers are assumed to be positive). Given a non-zero rational number r, we can write it uniquely in the form

$$
\begin{equation*}
r=\frac{p^{\nu} n}{k} \tag{2}
\end{equation*}
$$

where n and ν are integers, k is a positive integer, and neither n nor k is divisible by p. Define $\nu(r)$ to be the integer ν occurring in this expression [note $\nu(r)$ means ν is a function of $r-n o t$ multiplication]. For rational $r \neq 0$ we define the norm

$$
|r|_{p}=p^{-\nu} \quad \text { while } \quad|0|_{p}=0
$$

Example: If $x=63 / 550=2^{-1} \cdot 3^{2} \cdot 5^{-2} \cdot 7 \cdot 11^{-1}$, then
$|x|_{2}=2, \quad|x|_{3}=1 / 9, \quad|x|_{5}=25, \quad|x|_{7}=1 / 7, \quad|x|_{11}=11$, and $|x|_{13}=1$.
For $x, y \in \mathbb{Q}$, define the coresponding metric

$$
d_{p}(x, y)=|x-y|_{p}
$$

Warmup: Compute $d_{3}(9,0), d_{3}(18,0), d_{3}(4,15), d_{3}(15,2 / 9)$, and $d_{3}(15,9 / 2)$.
a) Show that $\left(\mathbb{Q}, d_{p}\right)$ is a metric space, and that in fact $d(x, z) \leq \max (d(x, y), d(y, z))$.
b) Show that if $x \in N_{r}(a)$, then $N_{r}(x)=N_{r}(a)$, so that any point of the neighborhood $N_{r}(a)$ is a "center" of that neighborhood.
c) Show that given two neighborhoods $N_{r_{1}}\left(a_{1}\right)$ and $N_{r_{2}}\left(a_{2}\right)$, either they are disjoint or one is contained in the other.
Strange metric, isn't it?

Bonus Problem

[Please give this directly to Professor Kazdan]

B-1 Define two real numbers x and y to be equal if $|x-y|$ is an integer, thus we have a "topological circle" whose circumference is one.
Let α be an irrational real number, $0<\alpha<1$ and consider its integer multiples, $\alpha, 2 \alpha$, $3 \alpha \ldots$ Show that this set is dense in $0 \leq x \leq 1$.
[Last revised: September 16, 2014]

