Problem Set 5

Due: Thurs. Oct. 2, 2014. Late papers will be accepted until 1:00 PM Friday.

This week. Please read all of Chapter 3 of the Rudin text. Although there are 12 problems, many of them should be quite routine.

1. (Rudin, p. $78 \# 6 \mathrm{~d})$ Investigate the convergence or divergence of $\sum_{n} \frac{1}{1+z^{n}}$ (complex z).
2. (Rudin p. $79 \# 8$) Assume $a_{n}>0$. If $\sum a_{n}$ converges and $\left\{b_{n}\right\}$ is bounded, prove that $\sum a_{n} b_{n}$ converges.
3. (Rudin p. $79 \# 9$) Find the radius of convergence of each of the following power series.
a). $\sum n^{3} z^{n}$,
b). $\sum \frac{2^{n}}{n!} z^{n}$
c). $\sum n!z^{n}$
4. Determine the limit of the sequence $\left\{a_{n}\right\}$ defined by $a_{0}:=0$ and $a_{n}:=a_{n-1}^{2}+\frac{4}{25}$ for each $n \geq 1$.
5. (Rudin, p. $78 \# 7$) If $a_{n} \geq 0$ and $\sum_{n=1}^{\infty} a_{n}$ converges, show that $\sum_{n=1}^{\infty} \frac{\sqrt{a_{n}}}{n}$ converges. [Suggestion: Use $2|x y| \leq x^{2}+y^{2}$ for all real x, y.]
6. Find a number N so that $1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{N}>100$.
7. Determine if the series $1+\frac{1}{2}-\frac{1}{3}-\frac{1}{4}+\frac{1}{5}+\frac{1}{6}-\frac{1}{7}-\frac{1}{8}+\cdots \quad$ converges or diverges (the sign pattern is $++--++--++--++\ldots$).
8. In R^{n}, for a vector $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, for any $1 \leq p<\infty$ we can define the norm

$$
\|x\|_{p}:=\left[\left|x_{1}\right|^{p}+\left|x_{2}\right|^{p}+\cdots+\left|x_{n}\right|^{p}\right]^{1 / p}=\left[\sum_{j=1}^{n}\left|x_{j}\right|^{p}\right]^{1 / p}
$$

(we'll prove the triangle inequality later).
a) Show that $\max _{1 \leq j \leq n}\left\{\left|x_{j}\right|\right\} \leq\|x\|_{p} \leq n^{1 / p} \max _{1 \leq j \leq n}\left\{\left|x_{j}\right|\right\}$.
b) Show that $\lim _{p \rightarrow \infty}\|x\|_{p}=\max _{1 \leq j \leq n}\left\{\left|x_{j}\right|,\right\}$. [Thus we define $\|x\|_{\infty}=\max _{1 \leq j \leq n}\left\{\left|x_{j}\right|,\right\}$.]
9. In http://www.math.upenn.edu/~kazdan/508F15/Notes/Basic-examples.pdf we
defined the space ℓ_{2}. Show that it is complete. You can see a similar proof for ℓ_{1} in http://www.math.upenn.edu/~kazdan/508F10/completeness-l_1-2010.pdf
10. Let A be an $n \times n$ real or complex matrix. We use the norm of Homework Set $3 \# 6$.
a) Compute $(I-A)\left(I+A+A^{2}+A^{3}+A^{4}+\cdots+A^{N}\right)$.
b) If $|A|<1$, show that the matrix $I-A$ is invertible. Thefirststepistoshowthat $\mathrm{S}_{k}:=$ $I+A+A^{2}+\cdots+A_{k}$ is a Cauchy sequence, so there is some matrix S to which it converges. Then use Part a) to show that $(I-A) Q=I$.]
c) Show that the set of invertible $n \times n$ (real or complex) matrices is open. Thus if a matrix is invertible, so are all nearby matrices.
11. Show that the set $O(n)$ of all $n \times n$ real orthogonal matrices is compact. Note $O(n) \subset$ $\mathbb{R}^{n^{2}}$ [Remark: There are many (equivalent) definitions for an orthogonal matrix. Use whichever you prefer.]
12. a) Let $\left\{a_{n}\right\}$ be a sequence of real numbers with the property that

$$
\left|a_{k+1}-a_{k}\right| \leq \frac{1}{2}\left|a_{k}-a_{k-1}\right|, \quad k=1,2, \ldots .
$$

Show that this sequence converges to some real number. Hint: Show that $\left\{a_{n}\right\}$ is a Cauchy sequence. First step: $\left|a_{k+1}-a_{k}\right| \leq\left(\frac{1}{2}\right)^{k}\left|a_{1}-a_{0}\right|$. [One can replace $1 / 2$ by any c where $0<c<1$.]
b) In a complete metric space (X, d) say you have a map $f: X \rightarrow X$ that is contracting in the sense that for any p. $q \in X$

$$
d(f(p), f(q)) \leq \frac{1}{2} d(p, q) .
$$

Given any starting point $p_{0} \in X$ define the points $p_{k+1}=f\left(p_{k}\right), k=0,1,2, \ldots$. Show that the p_{k} converge to a some point $p \in X$ and that p is a fixed point of f in the sense that $f(p)=p$.
Show that this fixed point is unique, that is, if $f(p)=p$ and $f(q)=q$, then $p=q$.
[Last revised: September 30, 2014]

