Math 508, Fall 2014

Problem Set 6

DUE: Thurs. Oct. 23, 2014. Late papers will be accepted until 1:00 PM Friday.

This week. Please re-read all of Chapter 4 and the first part of Chapter 5 (through page 108) of the Rudin text.

The following short True-False [T/F] questions are exercises that are *not* to be handedin – but you should know how to solve them. For each, either provide a proof or give a counterexample.

- T/F-1 There is a continuous $f : \mathbb{R} \to \mathbb{R}$ such that f(x) = 0 if and only if x is an integer.
- T/F-2 If $f : \mathbb{R} \to \mathbb{R}$ is continuous everywhere and f(x) = 0 for all rational numbers x, then f(x) = 0 for all real x.

T/F-3 There exists some x > 1 such that $\frac{x^2+5}{3+x^7} = 1$.

T/F-4 The function $f(x) := |x|^3$ is continuous for all $x \in \mathbb{R}$.

T/F-5 Let f, g, and h be continuous on the interval [0, 2]. If f(0) < g(0) < h(0) and f(2) > g(2) > h(2), then there exists some $c \in [0, 2]$ such that f(c) = g(c) = h(c).

T/F-6 a) If f is continuous on \mathbb{R} , then f is bounded.

- b) If f is continuous on [0, 1], then f is bounded.
- c) If f is continuous on \mathbb{R} and is bounded, then f attains its supremum.

THE FOLLOWING PROBLEMS SHOULD BE HANDED-IN.

- 1. Prove that $\cos x$ and $\sin x$ are continuous for all $x \in \mathbb{R}$. [You may use the usual formulas for $\cos(x+y)$ and $\sin(x+y)$.]
- 2. Let $f(x) := x^2 + 4x$. Clearly $\lim_{x\to 0} f(x) = 0$. Assuming that $0 < \epsilon < 4$, find $\delta > 0$ so that $|x| < \delta$ implies that $|f(x)| < \epsilon$. Express δ as a function of ϵ . [You are not asked to find the *best* δ .]
- 3. Prove that there exists some $x \in [1, 2]$ such that $x^5 + 2x + 5 = x^4 + 10$.

- 4. Show that at any time there are at least two diametrically opposite points on the equator of the earth with the same temperature. Generalize.
- 5. Construct a function f with the property that there are sequences a_n and b_n converging to zero such that $f(a_n)$ converges to zero but $f(b_n)$ is unbounded. Does there exist such a function f that is continuous at x = 0?
- 6. Let $f(a, n) := (1 + a)^n$, where a and n are positive.
 - a) For constant a, how does f(a, n) behave as $n \to \infty$? For constant n, how does f(a, n) behave as $a \to 0$?
 - b) Let $L \ge 1$ be a given real number. Prove that there exists a sequence $a_n \to 0$ and $f(a_n, n) \to L$ as $n \to \infty$. In other words, depending on the choice of a_n , the function f may approach any value.
- 7. Which of the following functions are uniformly continuous on $[0, \infty)$ and why (or why not)?
 - a). $f(x) = x \sin x$, b). $g(x) = e^x$, c). $h(x) = \frac{1}{1+x}$
- 8. Show that $f(x) := \sqrt{x}$ is continuous for all $x \ge 0$. Is it uniformly continuous there?
- 9. If (X, d_1) any (Y, d_2) are two metric spaces (the metrics are d_1 and d_2), these metric spaces are called *homeomorphic* if there is a continuous bijection $f: X \to Y$.
 - a) Prove that [0,1] and \mathbb{R} are *not* homeomorphic.
 - b) Prove that \mathbb{R} and $0 < x < \infty$ are homeomorphic.
 - c) Prove that \mathbb{R}^2 and the upper half-plane $\{(x, y) \in \mathbb{R}^2 : y > 0\}$ are homeomorphic.
 - d) Prove that (-1, 1) and \mathbb{R} are homeomorphic.

10. Let $f(x) := x \sin(1/x)$ for $x \neq 0$ while f(0) := 0.

- a) Prove that f is continuous for all real x.
- b) Is f uniformly continuous for $x \in [0, 2/\pi]$? Why?
- c) Is f uniformly continuous for all real x? Why?
- 11. Consider \mathbb{R}^n with the Euclidean norm $|x|_2$ and let ||x|| be any norm on \mathbb{R}^n .
 - a) Let $f(x) : \mathbb{R}^n \to \mathbb{R}$ be the function f(x) := ||x||. Show that f is continuous at every point of \mathbb{R}^n .

b) Show these norms are *equivalent* in the sense that there are constants $c_1 > 0$, $c_2 > 0$ such that for any $x \in \mathbb{R}^n$

 $c_1 |x|_2 \le ||x|| \le c_2 |x|_2.$

[SUGGESTION: Look at the function $f(x) := ||x||/|x|_2$ on the unit sphere $|x|_2 = 1$].

12. Let f(x) be a continuous real-valued function with the property

$$f(x+y) = f(x) + f(y)$$

for all real x, y. Show that f(x) = cx for some constant c.

- 13. [Partly from Rudin, p. 99 # 8]. Let $E \subset \mathbb{R}$ be a set and $f : E \to \mathbb{R}$ be uniformly continuous.
 - a) If E is a bounded set, show that f(E) is a bounded set.
 - b) If E is not bounded, give an example showing that f(E) might not be bounded.
- 14. If $f : \mathbb{R} \to \mathbb{R}$ is uniformly continuous on *all* of \mathbb{R} , show there are constants *a* and *b* so that

$$|f(x)| \le a + b|x|.$$

Bonus Problem

[Please give this directly to Professor Kazdan]

- B-1 [Rudin, p. 98 # 3]. Let \mathcal{M} be a metric space and $f : \mathcal{M} \to \mathbb{R}$ a continuous function. Denote by Z(f) the zero set of f. These are the points $p \in \mathcal{M}$ where f is zero, f(p) = 0.
 - a) Show that Z(f) is a closed set.
 - b) [See also Rudin, p. 101 #20] Given any set $E \in \mathcal{M}$, the distance of a point p to E is defined by

$$h(p) := \inf_{z \in E} d(p, z).$$

Show that h is a uniformly continuous function.

- c) Use the previous part to show that given any *closed* set $E \in \mathcal{M}$, there is a continuous function that is zero on E and positive elsewhere.
- B-2 [Rudin, p. 99 # 13 or #11, see also p. 98 #4] extension by continuity Let X be a metric space, $E \subset X$ a dense subset, and $f: E \to \mathbb{R}$ a uniformly continuous function. Show that f has a unique continuous extension to all of X. That is, there is a unique continuous function $g: X \to \mathbb{R}$ with the property that g(p) = f(p) for all $p \in E$.

In your proof, show where it fails if you tried to apply your procedure to extend the function $f(x) := \sin(1/x)$ from $E := \{0 < x \le 1\}$ to all of $\{0 \le x \le 1\}$.

[Remark: One generalize this by replacing \mathbb{R} by any complete metric space.]

[Last revised: October 27, 2014]