
Math 508, Fall 2014 Jerry L. Kazdan

Problem Set 6

Due: Thurs. Oct. 23, 2014. Late papers will be accepted until 1:00 PM Friday.

This week. Please re-read all of Chapter 4 and the first part of Chapter 5 (through page
108) of the Rudin text.

The following short True-False [T/F] questions are exercises that are not to be handed-
in – but you should know how to solve them. For each, either provide a proof or give a
counterexample.

T/F-1 There is a continuous f : R → R such that f(x) = 0 if and only if x is an integer.

T/F-2 If f : R → R is continuous everywhere and f(x) = 0 for all rational numbers x, then
f(x) = 0 for all real x.

T/F-3 There exists some x > 1 such that x
2+5

3+x7 = 1.

T/F-4 The function f(x) := |x|3 is continuous for all x ∈ R.

T/F-5 Let f , g, and h be continuous on the interval [0, 2]. If f(0) < g(0) < h(0) and
f(2) > g(2) > h(2), then there exists some c ∈ [0, 2] such that f(c) = g(c) = h(c).

T/F-6 a) If f is continuous on R, then f is bounded.

b) If f is continuous on [0, 1], then f is bounded.

c) If f is continuous on R and is bounded, then f attains its supremum.

The following problems should be handed-in.

1. Prove that cosx and sinx are continuous for all x ∈ R. [You may use the usual formulas
for cos(x + y) and sin(x + y).]

2. Let f(x) := x2 + 4x. Clearly limx→0 f(x) = 0. Assuming that 0 < ǫ < 4, find δ > 0 so
that |x| < δ implies that |f(x)| < ǫ. Express δ as a function of ǫ. [You are not asked to
find the best δ.]

3. Prove that there exists some x ∈ [1, 2] such that x5 + 2x + 5 = x4 + 10.

1



4. Show that at any time there are at least two diametrically opposite points on the
equator of the earth with the same temperature. Generalize.

5. Construct a function f with the property that there are sequences an and bn converging
to zero such that f(an) converges to zero but f(bn) is unbounded. Does there exist such

a function f that is continuous at x = 0?

6. Let f(a, n) := (1 + a)n, where a and n are positive.

a) For constant a, how does f(a, n) behave as n → ∞? For constant n, how does
f(a, n) behave as a → 0?

b) Let L ≥ 1 be a given real number. Prove that there exists a sequence an → 0
and f(an, n) → L as n → ∞. In other words, depending on the choice of an, the
function f may approach any value.

7. Which of the following functions are uniformly continuous on [0, ∞) – and why (or why
not)?

a). f(x) = x sinx, b). g(x) = ex, c). h(x) = 1

1+x

8. Show that f(x) :=
√

x is continuous for all x ≥ 0. Is it uniformly continuous there?

9. If (X, d1) any (Y, d2) are two metric spaces (the metrics are d1 and d2), these metric
spaces are called homeomorphic if there is a continuous bijection f : X → Y .

a) Prove that [0, 1] and R are not homeomorphic.

b) Prove that R and 0 < x < ∞ are homeomorphic.

c) Prove that R
2 and the upper half-plane {(x, y) ∈ R

2 : y > 0} are homeomorphic.

d) Prove that (−1, 1) and R are homeomorphic.

10. Let f(x) := x sin(1/x) for x 6= 0 while f(0) := 0.

a) Prove that f is continuous for all real x.

b) Is f uniformly continuous for x ∈ [0, 2/π]? Why?

c) Is f uniformly continuous for all real x? Why?

11. Consider R
n with the Euclidean norm |x|2 and let ‖x‖ be any norm on R

n.

a) Let f(x) : R
n → R be the function f(x) := ‖x‖. Show that f is continuous at every

point of R
n.
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b) Show these norms are equivalent in the sense that there are constants c1 > 0, c2 > 0
such that for any x ∈ R

n

c1|x|2 ≤ ‖x‖ ≤ c2|x|2.
[Suggestion: Look at the function f(x) := ‖x‖/|x|2 on the unit sphere |x|2 = 1].

12. Let f(x) be a continuous real-valued function with the property

f(x + y) = f(x) + f(y)

for all real x, y. Show that f(x) = cx for some constant c.

13. [Partly from Rudin, p. 99 # 8]. Let E ⊂ R be a set and f : E → R be uniformly
continuous.

a) If E is a bounded set, show that f(E) is a bounded set.

b) If E is not bounded, give an example showing that f(E) might not be bounded.

14. If f : R → R is uniformly continuous on all of R, show there are constants a and b so
that

|f(x)| ≤ a + b|x|.

Bonus Problem

[Please give this directly to Professor Kazdan]

B-1 [Rudin, p. 98 # 3]. Let M be a metric space and f : M → R a continuous function.
Denote by Z(f) the zero set of f . These are the points p ∈ M where f is zero,
f(p) = 0.

a) Show that Z(f) is a closed set.

b) [See also Rudin, p. 101 #20] Given any set E ∈ M, the distance of a point p to E
is defined by

h(p) := inf
z∈E

d(p, z).

Show that h is a uniformly continuous function.

c) Use the previous part to show that given any closed set E ∈ M, there is a contin-
uous function that is zero on E and positive elsewhere.

B-2 [Rudin, p. 99 # 13 or #11, see also p. 98 #4] extension by continuity Let X be a
metric space, E ⊂ X a dense subset, and f : E → R a uniformly continuous function.
Show that f has a unique continuous extension to all of X. That is, there is a unique
continuous function g : X → R with the property that g(p) = f(p) for all p ∈ E.

3



In your proof, show where it fails if you tried to apply your procedure to extend the
function f(x) := sin(1/x) from E := {0 < x ≤ 1} to all of {0 ≤ x ≤ 1}.
[Remark: One generalize this by replacing R by any complete metric space.]

[Last revised: October 27, 2014]
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