Problem Set 6

Due: Thurs. Oct. 23, 2014. Late papers will be accepted until 1:00 PM Friday.

This week. Please re-read all of Chapter 4 and the first part of Chapter 5 (through page 108) of the Rudin text.

The following short True-False $[\mathrm{T} / \mathrm{F}]$ questions are exercises that are not to be handedin - but you should know how to solve them. For each, either provide a proof or give a counterexample.

T/F-1 There is a continuous $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f(x)=0$ if and only if x is an integer.

T/F-2 If $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous everywhere and $f(x)=0$ for all rational numbers x, then $f(x)=0$ for all real x.

T/F-3 There exists some $x>1$ such that $\frac{x^{2}+5}{3+x^{7}}=1$.

T/F-4 The function $f(x):=|x|^{3}$ is continuous for all $x \in \mathbb{R}$.
T/F-5 Let f, g, and h be continuous on the interval [0, 2]. If $f(0)<g(0)<h(0)$ and $f(2)>g(2)>h(2)$, then there exists some $c \in[0,2]$ such that $f(c)=g(c)=h(c)$.

T/F-6 a) If f is continuous on \mathbb{R}, then f is bounded.
b) If f is continuous on $[0,1]$, then f is bounded.
c) If f is continuous on \mathbb{R} and is bounded, then f attains its supremum.

The following problems should be handed-in.

1. Prove that $\cos x$ and $\sin x$ are continuous for all $x \in \mathbb{R}$. [You may use the usual formulas for $\cos (x+y)$ and $\sin (x+y)$.]
2. Let $f(x):=x^{2}+4 x$. Clearly $\lim _{x \rightarrow 0} f(x)=0$. Assuming that $0<\epsilon<4$, find $\delta>0$ so that $|x|<\delta$ implies that $|f(x)|<\epsilon$. Express δ as a function of ϵ. [You are not asked to find the best δ.]
3. Prove that there exists some $x \in[1,2]$ such that $x^{5}+2 x+5=x^{4}+10$.
4. Show that at any time there are at least two diametrically opposite points on the equator of the earth with the same temperature. Generalize.
5. Construct a function f with the property that there are sequences a_{n} and b_{n} converging to zero such that $f\left(a_{n}\right)$ converges to zero but $f\left(b_{n}\right)$ is unbounded. Does there exist such a function f that is continuous at $x=0$?
6. Let $f(a, n):=(1+a)^{n}$, where a and n are positive.
a) For constant a, how does $f(a, n)$ behave as $n \rightarrow \infty$? For constant n, how does $f(a, n)$ behave as $a \rightarrow 0$?
b) Let $L \geq 1$ be a given real number. Prove that there exists a sequence $a_{n} \rightarrow 0$ and $f\left(a_{n}, n\right) \rightarrow L$ as $n \rightarrow \infty$. In other words, depending on the choice of a_{n}, the function f may approach any value.
7. Which of the following functions are uniformly continuous on $[0, \infty)$ - and why (or why not)?
a). $f(x)=x \sin x$,
b). $g(x)=e^{x}$,
c). $h(x)=\frac{1}{1+x}$
8. Show that $f(x):=\sqrt{x}$ is continuous for all $x \geq 0$. Is it uniformly continuous there?
9. If $\left(X, d_{1}\right)$ any $\left(Y, d_{2}\right)$ are two metric spaces (the metrics are d_{1} and $\left.d_{2}\right)$, these metric spaces are called homeomorphic if there is a continuous bijection $f: X \rightarrow Y$.
a) Prove that $[0,1]$ and \mathbb{R} are not homeomorphic.
b) Prove that \mathbb{R} and $0<x<\infty$ are homeomorphic.
c) Prove that \mathbb{R}^{2} and the upper half-plane $\left\{(x, y) \in \mathbb{R}^{2}: y>0\right\}$ are homeomorphic.
d) Prove that $(-1,1)$ and \mathbb{R} are homeomorphic.
10. Let $f(x):=x \sin (1 / x)$ for $x \neq 0$ while $f(0):=0$.
a) Prove that f is continuous for all real x.
b) Is f uniformly continuous for $x \in[0,2 / \pi]$? Why?
c) Is f uniformly continuous for all real x ? Why?
11. Consider \mathbb{R}^{n} with the Euclidean norm $|x|_{2}$ and let $\|x\|$ be any norm on \mathbb{R}^{n}.
a) Let $f(x): \mathbb{R}^{n} \rightarrow \mathbb{R}$ be the function $f(x):=\|x\|$. Show that f is continuous at every point of \mathbb{R}^{n}.
b) Show these norms are equivalent in the sense that there are constants $c_{1}>0, c_{2}>0$ such that for any $x \in \mathbb{R}^{n}$

$$
c_{1}|x|_{2} \leq\|x\| \leq c_{2}|x|_{2} .
$$

[Suggestion: Look at the function $f(x):=\|x\| /|x|_{2}$ on the unit sphere $\left.|x|_{2}=1\right]$.
12. Let $f(x)$ be a continuous real-valued function with the property

$$
f(x+y)=f(x)+f(y)
$$

for all real x, y. Show that $f(x)=c x$ for some constant c.
13. [Partly from Rudin, p. $99 \# 8]$. Let $E \subset \mathbb{R}$ be a set and $f: E \rightarrow \mathbb{R}$ be uniformly continuous.
a) If E is a bounded set, show that $f(E)$ is a bounded set.
b) If E is not bounded, give an example showing that $f(E)$ might not be bounded.
14. If $f: \mathbb{R} \rightarrow \mathbb{R}$ is uniformly continuous on all of \mathbb{R}, show there are constants a and b so that

$$
|f(x)| \leq a+b|x| .
$$

Bonus Problem

[Please give this directly to Professor Kazdan]
B-1 [Rudin, p. $98 \# 3$]. Let \mathcal{M} be a metric space and $f: \mathcal{M} \rightarrow \mathbb{R}$ a continuous function. Denote by $Z(f)$ the zero set of f. These are the points $p \in \mathcal{M}$ where f is zero, $f(p)=0$.
a) Show that $Z(f)$ is a closed set.
b) [See also Rudin, p. $101 \# 20]$ Given any set $E \in \mathcal{M}$, the distance of a point p to E is defined by

$$
h(p):=\inf _{z \in E} d(p, z) .
$$

Show that h is a uniformly continuous function.
c) Use the previous part to show that given any closed set $E \in \mathcal{M}$, there is a continuous function that is zero on E and positive elsewhere.

B-2 [Rudin, p. $99 \# 13$ or \#11, see also p. $98 \# 4]$ extension by continuity Let X be a metric space, $E \subset X$ a dense subset, and $f: E \rightarrow \mathbb{R}$ a uniformly continuous function. Show that f has a unique continuous extension to all of X. That is, there is a unique continuous function $g: X \rightarrow \mathbb{R}$ with the property that $g(p)=f(p)$ for all $p \in E$.

In your proof, show where it fails if you tried to apply your procedure to extend the function $f(x):=\sin (1 / x)$ from $E:=\{0<x \leq 1\}$ to all of $\{0 \leq x \leq 1\}$.
[REmark: One generalize this by replacing \mathbb{R} by any complete metric space.]
[Last revised: October 27, 2014]

