## Problem Set 7

Due: Thurs. Oct. 30, 2014. Late papers will be accepted until 1:00 PM Friday.

This week. Please read all of Chapter 5 in the Rudin text.

Note: We say a function is smooth if its derivatives of all orders exist and are continuous.

1. Let $f:[a, \infty) \rightarrow \mathbb{R}$ be a smooth function whose first derivative is bounded: $\left|f^{\prime}(x)\right| \leq M$ for all $x \geq a$. Prove that it is uniformly continuous on $[a, \infty)$.
As immediate examples, $x^{1 / 3}$ is uniformly continuous for all $x \geq 1$ and $\cos x$ is uniformly continuous for all $x$.
2. a) Show that $\sin x$ is not a polynomial.
b) Show that $\sin x$ is not a rational function, that is, it cannot be the quotient of two polynomials.
c) Let $f(t)$ be periodic with period 1 , so $f(t+1)=f(t)$ for all real $t$. If $f$ is not a constant, show that it cannot be a rational function. that is, $f$ cannot be the quotient of two polynomials.
d) Show that $e^{x}$ is not a rational function.
3. Show that $\lim _{n \rightarrow \infty}(n+1)^{1 / 7}-n^{1 / 7}=0$. [HinT: Mean Value Theorem]
4. Say a smooth function $f: \mathbb{R} \rightarrow \mathbb{R}$ has the properies $f(0)=3, f(1)=2$, and $f(3)=8$. Show there is at least one point $c$ in the interval $0<x<3$ where $f^{\prime \prime}(c)>0$; in fact, find some explicit constant $M>0$ such that $f^{\prime \prime}(c) \geq M$.
5. a) If a smooth function $f(x)$ has the property that $f^{\prime \prime}(x) \geq 0$ for all $x$, show that it is convex, that is, at every point the graph of the curve $y=f(x)$ lies above all its tangent lines.
b) Let $v(x)$ be a smooth real-valued function for $0 \leq x \leq 1$. If $v(0)=v(1)=0$ and $v^{\prime \prime}(x)>0$ for all $0 \leq x \leq 1$, show that $v(x) \leq 0$ for all $0 \leq x \leq 1$.
c) Prove that the function $e^{x}$ is convex.
d) Show that $e^{x} \geq 1+x$ for all real $x$.
6. a) Let $p(x):=x^{3}+c x+d$, where $c$, and $d$ are real. Under what conditions on $c$ and $d$ does this has three distinct real roots? [ANSWER: $c<0$ and $d^{2}<-4 c^{3} / 27$ ].
b) Generalize to the real polynomial $p(x):=a x^{3}+b x^{2}+c x+d(a \neq 0)$ by a change of variable $t=x-\alpha$ (with a clever choice of $\alpha$ ) to reduce to the above special case.
7. Let

$$
p_{n}(x):=\left(\frac{d}{d x}\right)^{n}\left(1-x^{2}\right)^{n} .
$$

This is a polynomial of degree $n$. Show that it has $n$ real distinct zeroes, all in the interval $-1<x<1$.
8. a) For any integer $n \geq 0$, show that $\lim _{x \searrow 0} \frac{e^{-1 / x}}{x^{n}}=0$.
b) Define $f: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
f(x)=\left\{\begin{array}{ll}
e^{-\frac{1}{x}} & \text { for } x>0 \\
0 & \text { for } x \leq 0
\end{array} .\right.
$$

Sketch the graph of $f$.
c) Show that $f$ is a smooth function for all real $x$.
d) Show that each of the following are smooth and sketch their graphs:

$$
\begin{aligned}
g(x) & =f(x) f(1-x) & h(x) & =\frac{f(x)}{f(x)+f(1-x)} \\
k(x) & =h(x) h(4-x) & K(x) & =k(x+2), \\
\varphi(x, y) & =K(x) K(y),(x, y) \in \mathbb{R}^{2} & \Phi(x) & =K(\|x\|), x=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} \\
G(x) & =\sum_{n=-\infty}^{\infty} g(x-n / 2) & p(x) & =\frac{g(x)}{G(x)}
\end{aligned}
$$

e) Define $p_{n}(x)=p(x-n / 2)$. Show that $\sum_{n=-\infty}^{\infty} p_{n}(x) \equiv 1$. This is called a (smooth) partition of unity for the real line. Note that for any function $u(x)$ if we let $u_{n}(x):=$ $p_{n}(x) u(x)$, then $u(x)=\sum_{n=-\infty}^{\infty} u_{n}(x)$. This gives a way to localize a function defined of the whole real line.

## Bonus Problem

[Please give this directly to Professor Kazdan]
B-1 [Interpolation] Let $x_{0}<x_{1}<x_{2}$ be distinct real numbers and $f(x)$ a smooth function.
a) Show there is a unique quadratic polynomial $p(x)$ with the property that $p\left(x_{j}\right)=$ $f\left(x_{j}\right)$ for $j=0,1,2$.
b) [Remainder term in interpolation] If $b$ is in the open interval ( $x_{0}, x_{2}$ ) with $b \neq x_{j}$, $j=0,1,2$, show there is a point $c$ (depending on $b$ ) in the interval ( $x_{0}, x_{2}$ ) so that

$$
f(b)=p(b)+\frac{f^{\prime \prime \prime}(c)}{3!}\left(b-x_{0}\right)\left(b-x_{1}\right)\left(b-x_{2}\right) .
$$

This estimate is related to the procedure used to find the remainder in a Taylor polynomial.
[Suggestion: Define the constant $M$ by

$$
f(b)=p(b)+M\left(b-x_{0}\right)\left(b-x_{1}\right)\left(b-x_{2}\right),
$$

and look at

$$
\left.g(x):=f(x)-\left[p(x)+M\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right)\right] .\right]
$$

[Last revised: October 3, 2023]

