Problem Set 8

Due: Thurs. Nov. 6, 2014. Late papers will be accepted until 1:00 PM Friday.
This week. Please read all of Chapter 6 in the Rudin text. Note that we will only discuss the Riemann integral, not the Riemann-Stieltjes integral.

Note: We say a function is smooth if its derivatives of all orders exist and are continuous.

1. Use the definition of the derivative as the limit of a difference quotient to show that $\cos x$ is differentiable for all x. [You may use without proof that $\lim _{\theta \rightarrow 0} \sin \theta / \theta=1$ and $\lim _{\theta \rightarrow 0}(1-\cos \theta) / \theta=0$.]
2. Let $A(t)$ be an $n \times n$ matrix whose elements depend smoothly on $t \in \mathbb{R}$. Assume $A(t)$ is invertible at $t=t_{0}$.
a) Compute the derivative of $A^{2}(t)$ in terms of A and A^{\prime}.
b) Show that $A(t)$ is invertible for all t near t_{0}. [Problem Set $\left.5 \# 10\right]$.
c) Show that $A^{-1}(t)$ is differentiable at $t=t_{0}$ and find a formula for it. Of course, from the special case of 1×1 matrices you have a guess what it should (roughly) be.
d) Find a formula for the derivative of $A^{-2}(t)$ at $t=t_{0}$.
3. In class we proved that the only solution of the differential equation $u^{\prime}(x)=u(x)$ with $u(0)=1$ is $u(x)=e^{x}$.
a) Use this to find the unique solution of $v^{\prime}=v$ with $v(0)=c$, where c is a constant.
b) Apply this to show that $e^{x+a}=e^{a} e^{x}$ for all real a and x.
c) If for some constant γ the differentiable function $v(x)$ satisfies $v^{\prime}-\gamma v \leq 0$, show that $v(x) \leq v(0) e^{\gamma x}$ for all $x \geq 0$. [Hint: Consider $g(x):=e^{-\gamma x} v(x)$.]
4. A continuous function is called piecewise linear if it consists only of straight line segments (see https://en.wikipedia.org/wiki/Piecewise_linear_function)
Let $f:[a, b] \rightarrow \mathbb{R}$ be a continuous function. Show that given any $\epsilon>0$, there is a piecewise linear function $g:[a, b] \rightarrow \mathbb{R}$ such that $|f(x)-g(x)|<\epsilon$ for all $x \in[a, b]$. In other words, any continuous function on $[a, b]$ can be approximated "uniformly" by a piecewise linear function.
5. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a smooth function.
a) If $f^{\prime}(1)=0, f^{\prime \prime}(1)=0, f^{\prime \prime \prime}(1)=0$ and $f^{\prime \prime \prime \prime}(1)>0$, show that f has a local minimum at $x=1$.
b) If $f^{\prime}(1)=0, f^{\prime \prime}(1)=0$, and $f^{\prime \prime \prime}(1)>0$, what can you say about the behavior of f near $x=1$?
6. Say a smooth function $u(x)$ is a solution of the differential equation

$$
u^{\prime \prime}+3 u^{\prime}-\left(1+x^{2}\right) u=0
$$

a) Show that u cannot have a positive local maximum (that is, a local maximum where u is positive).
b) Similarly, show that u cannot have a negative local minimum.
c) If $u(x)$ satisfies the above equation on the interval $[0,2]$ with the boundary conditions $u(0)=0$ and $u(2)=0$, show that $u(x)=0$ in $[0,2]$.
d) Generalize all of the above to solutions of

$$
u^{\prime \prime}+b(x) u^{\prime}-c(x) u=0 \quad \text { on } \quad\{\alpha \leq x \leq \beta\},
$$

where $b(x)$ and $c(x)$ are any continuous functions with $c(x)>0$.
7. a) A strictly increasing, continuous, real-valued function f on an open interval $I \subset \mathbb{R}$ has an inverse function f^{-1} which is also strictly increasing, continuous, and defined on an open interval U. Suppose $f \in C^{1}(I)$ and $f^{\prime}\left(t_{0}\right)>0$ at some point $t_{0} \in I$ [here $C^{1}(I)$ means the function is differentiable on I and this derivative is a continuous function).
Prove that there is an open sub-interval $I^{\prime} \subset I$ on which f^{-1} exists, is strictly increasing, and continuous.
b) Using f^{-1} from the previous part, prove that $f^{-1} \in C^{1}\left(U^{\prime}\right)$ (where U^{\prime} is its domain) and that

$$
\frac{d}{d y} f^{-1}(y)=\frac{1}{f^{\prime}(x)}
$$

if x is chosen to equal $f^{-1}(y)$. This is a special case of the Inverse Function Theorem, which you will most likely study further (in higher dimensions) in Math 509. [Hint: Let $a:=f^{-1}(y)$ and $b:=f^{-1}(y+h)$. What does the Mean Value Theorem say about $f(b)-f(a)$?]
8. Use the definition of the integral as a Riemann sum to compute $\int_{0}^{b} \sin x d x$. You will need the formula for $\sin \theta+\sin 2 \theta+\sin 3 \theta+\cdots+\sin n \theta$; see
http://www.math.upenn.edu/~kazdan/202F13/notes/sum-sin_kx.pdf
9. Let $f(x)=\sin (1 / x)$ for $0<x \leq 2 / \pi$ while $f(0)=3$. Show that f is Riemann integrable on the interval $[0,2 / \pi]$.
10. Let f be continuous on the interval $[a, b]$ and assume that $f(x) \geq 0$ for all $a \leq x \leq b$. Use the definition of the integral as a Riemann sum to show that if $\int_{a}^{b} f(x) d x=0$, then $f(x)=0$ everywhere. [You will need to use that since f is continuous, if it is positive at some point, then it is positive in some interval containing the point.]
11. Prove the Integral Intermediate Value Theorem: If f is real and continuous on $[a, b]$, then there exists $c \in(a, b)$ such that

$$
\frac{1}{b-a} \int_{a}^{b} f(x) d x=f(c) .
$$

Also, give an example showing that such a c may not exist if f is not continuous.

Bonus Problem

[Please give this directly to Professor Kazdan]
B-1 Say a function $u(x)$ satisfies the differential equation

$$
\begin{equation*}
u^{\prime \prime}+b(x) u^{\prime}+c(x) u=0 \tag{1}
\end{equation*}
$$

on the interval $[0, A]$ and that the coefficients $b(x)$ and $c(x)$ are both bounded, say $|b(x)| \leq M$ and $|c(x)| \leq M$ (if the coefficients are continuous, this is always true for some M).
a) Define $E(x):=\frac{1}{2}\left(u^{\prime 2}+u^{2}\right)$. Show that for some constant γ (depending on M) we have $E^{\prime}(x) \leq \gamma E(x)$. [Suggestion; use the inequality $2 x y \leq x^{2}+y^{2}$.]
b) Use Problem 3(c) above to show that $E(x) \leq e^{\gamma x} E(0)$ for all $x \in[0, A]$.
c) In particular, if $u(0)=0$ and $u^{\prime}(0)=0$, show that $E(x)=0$ and hence $u(x)=0$ for all $x \in[0, A]$. In other words, if $u^{\prime \prime}+b(x) u^{\prime}+c(x) u=0$ on the interval $[0, A]$ and that the functions $b(x)$ and $c(x)$ are both bounded, and if $u(0)=0$ and $u^{\prime}(0)-0$, then the only possibility is that $u(x) \equiv 0$ for all $x \geq 0$.
d) Use this to prove the uniqueness theorem: if $v(x)$ and $w(x)$ both satisfy equation (1) and have the same initial conditions, $v(0)=w(0)$ and $v^{\prime}(0)=w^{\prime}(0)$, then $v(x) \equiv w(x)$ in the interval $[0, A]$.
[Last revised: November 7, 2014]

