Problem Set 8

DUE: Thurs. Nov. 6, 2014. Late papers will be accepted until 1:00 PM Friday.

This week. Please read all of Chapter 6 in the Rudin text. Note that we will only discuss the Riemann integral, not the Riemann-Stieltjes integral.

Note: We say a function is *smooth* if its derivatives of all orders exist and are continuous.

- 1. Use the definition of the derivative as the limit of a difference quotient to show that $\cos x$ is differentiable for all x. [You may use without proof that $\lim_{\theta \to 0} \sin \theta / \theta = 1$ and $\lim_{\theta \to 0} (1 \cos \theta) / \theta = 0$.]
- 2. Let A(t) be an $n \times n$ matrix whose elements depend smoothly on $t \in \mathbb{R}$. Assume A(t) is invertible at $t = t_0$.
 - a) Compute the derivative of $A^2(t)$ in terms of A and A'.
 - b) Show that A(t) is invertible for all t near t_0 . [Problem Set 5 #10].
 - c) Show that $A^{-1}(t)$ is differentiable at $t = t_0$ and find a formula for it. Of course, from the special case of 1×1 matrices you have a guess what it should (roughly) be.
 - d) Find a formula for the derivative of $A^{-2}(t)$ at $t = t_0$.
- 3. In class we proved that the only solution of the differential equation u'(x) = u(x) with u(0) = 1 is $u(x) = e^x$.
 - a) Use this to find the unique solution of v' = v with v(0) = c, where c is a constant.
 - b) Apply this to show that $e^{x+a} = e^a e^x$ for all real a and x.
 - c) If for some constant γ the differentiable function v(x) satisfies $v' \gamma v \leq 0$, show that $v(x) \leq v(0)e^{\gamma x}$ for all $x \geq 0$. [HINT: Consider $g(x) := e^{-\gamma x}v(x)$.]
- 4. A continuous function is called *piecewise linear* if it consists only of straight line segments (see https://en.wikipedia.org/wiki/Piecewise_linear_function)

Let $f : [a, b] \to \mathbb{R}$ be a continuous function. Show that given any $\epsilon > 0$, there is a piecewise linear function $g : [a, b] \to \mathbb{R}$ such that $|f(x) - g(x)| < \epsilon$ for all $x \in [a, b]$. In other words, any continuous function on [a, b] can be approximated "uniformly" by a piecewise linear function.

- 5. Let $f : \mathbb{R} \to \mathbb{R}$ be a smooth function.
 - a) If f'(1) = 0, f''(1) = 0, f'''(1) = 0 and f''''(1) > 0, show that f has a local minimum at x = 1.
 - b) If f'(1) = 0, f''(1) = 0, and f'''(1) > 0, what can you say about the behavior of f near x = 1?
- 6. Say a smooth function u(x) is a solution of the differential equation

$$u'' + 3u' - (1 + x^2)u = 0.$$

- a) Show that u cannot have a positive local maximum (that is, a local maximum where u is positive).
- b) Similarly, show that u cannot have a negative local minimum.
- c) If u(x) satisfies the above equation on the interval [0, 2] with the boundary conditions u(0) = 0 and u(2) = 0, show that u(x) = 0 in [0, 2].
- d) Generalize all of the above to solutions of

$$u'' + b(x)u' - c(x)u = 0 \quad \text{on} \quad \{\alpha \le x \le \beta\},$$

where b(x) and c(x) are any continuous functions with c(x) > 0.

7. a) A strictly increasing, continuous, real-valued function f on an open interval $I \subset \mathbb{R}$ has an inverse function f^{-1} which is also strictly increasing, continuous, and defined on an open interval U. Suppose $f \in C^1(I)$ and $f'(t_0) > 0$ at some point $t_0 \in I$ [here $C^1(I)$ means the function is differentiable on I and this derivative is a continuous function).

Prove that there is an open sub-interval $I' \subset I$ on which f^{-1} exists, is strictly increasing, and continuous.

b) Using f^{-1} from the previous part, prove that $f^{-1} \in C^1(U')$ (where U' is its domain) and that

$$\frac{d}{dy}f^{-1}(y) = \frac{1}{f'(x)}$$

if x is chosen to equal $f^{-1}(y)$. This is a special case of the *Inverse Function Theorem*, which you will most likely study further (in higher dimensions) in Math 509. [HINT: Let $a := f^{-1}(y)$ and $b := f^{-1}(y+h)$. What does the Mean Value Theorem say about f(b) - f(a)?]

8. Use the definition of the integral as a Riemann sum to compute $\int_0^b \sin x \, dx$. You will need the formula for $\sin \theta + \sin 2\theta + \sin 3\theta + \cdots + \sin n\theta$; see

http://www.math.upenn.edu/~kazdan/202F13/notes/sum-sin_kx.pdf

- 9. Let $f(x) = \sin(1/x)$ for $0 < x \le 2/\pi$ while f(0) = 3. Show that f is Riemann integrable on the interval $[0, 2/\pi]$.
- 10. Let f be continuous on the interval [a, b] and assume that $f(x) \ge 0$ for all $a \le x \le b$. Use the definition of the integral as a Riemann sum to show that if $\int_a^b f(x) dx = 0$, then f(x) = 0 everywhere. [You will need to use that since f is continuous, if it is positive at some point, then it is positive in some interval containing the point.]
- 11. Prove the Integral Intermediate Value Theorem: If f is real and continuous on [a, b], then there exists $c \in (a, b)$ such that

$$\frac{1}{b-a}\int_{a}^{b}f(x)\,dx = f(c)$$

Also, give an example showing that such a c may not exist if f is not continuous.

Bonus Problem

[Please give this directly to Professor Kazdan]

B-1 Say a function u(x) satisfies the differential equation

$$u'' + b(x)u' + c(x)u = 0$$
(1)

on the interval [0, A] and that the coefficients b(x) and c(x) are both bounded, say $|b(x)| \leq M$ and $|c(x)| \leq M$ (if the coefficients are continuous, this is always true for some M).

- a) Define $E(x) := \frac{1}{2}(u'^2 + u^2)$. Show that for some constant γ (depending on M) we have $E'(x) \leq \gamma E(x)$. [SUGGESTION; use the inequality $2xy \leq x^2 + y^2$.]
- b) Use Problem 3(c) above to show that $E(x) \leq e^{\gamma x} E(0)$ for all $x \in [0, A]$.
- c) In particular, if u(0) = 0 and u'(0) = 0, show that E(x) = 0 and hence u(x) = 0 for all $x \in [0, A]$. In other words, if u'' + b(x)u' + c(x)u = 0 on the interval [0, A] and that the functions b(x) and c(x) are both bounded, and if u(0) = 0 and u'(0) 0, then the only possibility is that $u(x) \equiv 0$ for all $x \ge 0$.
- d) Use this to prove the uniqueness theorem: if v(x) and w(x) both satisfy equation (1) and have the same initial conditions, v(0) = w(0) and v'(0) = w'(0), then $v(x) \equiv w(x)$ in the interval [0, A].

[Last revised: November 7, 2014]