
Math 508, Fall 2014 Jerry L. Kazdan

Problem Set 8

Due: Thurs. Nov. 6, 2014. Late papers will be accepted until 1:00 PM Friday.

This week. Please read all of Chapter 6 in the Rudin text. Note that we will only discuss
the Riemann integral, not the Riemann-Stieltjes integral.

Note: We say a function is smooth if its derivatives of all orders exist and are continuous.

1. Use the definition of the derivative as the limit of a difference quotient to show that
cos x is differentiable for all x. [You may use without proof that limθ→0 sin θ/θ = 1 and
limθ→0(1 − cos θ)/θ = 0.]

2. Let A(t) be an n × n matrix whose elements depend smoothly on t ∈ R. Assume A(t)
is invertible at t = t0.

a) Compute the derivative of A2(t) in terms of A and A′.

b) Show that A(t) is invertible for all t near t0. [Problem Set 5 #10].

c) Show that A−1(t) is differentiable at t = t0 and find a formula for it. Of course,
from the special case of 1 × 1 matrices you have a guess what it should (roughly)
be.

d) Find a formula for the derivative of A−2(t) at t = t0.

3. In class we proved that the only solution of the differential equation u′(x) = u(x) with
u(0) = 1 is u(x) = ex.

a) Use this to find the unique solution of v′ = v with v(0) = c, where c is a constant.

b) Apply this to show that ex+a = eaex for all real a and x.

c) If for some constant γ the differentiable function v(x) satisfies v′ − γv ≤ 0, show
that v(x) ≤ v(0)eγx for all x ≥ 0. [Hint: Consider g(x) := e−γxv(x).]

4. A continuous function is called piecewise linear if it consists only of straight line seg-
ments (see https://en.wikipedia.org/wiki/Piecewise linear function)

Let f : [a, b] → R be a continuous function. Show that given any ǫ > 0, there is a
piecewise linear function g : [a, b] → R such that |f(x) − g(x)| < ǫ for all x ∈ [a, b]. In
other words, any continuous function on [a, b] can be approximated “uniformly” by a
piecewise linear function.
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5. Let f : R → R be a smooth function.

a) If f ′(1) = 0, f ′′(1) = 0, f ′′′(1) = 0 and f ′′′′(1) > 0, show that f has a local minimum
at x = 1.

b) If f ′(1) = 0, f ′′(1) = 0, and f ′′′(1) > 0, what can you say about the behavior of f
near x = 1?

6. Say a smooth function u(x) is a solution of the differential equation

u′′ + 3u′ − (1 + x2)u = 0.

a) Show that u cannot have a positive local maximum (that is, a local maximum where
u is positive).

b) Similarly, show that u cannot have a negative local minimum.

c) If u(x) satisfies the above equation on the interval [0, 2] with the boundary condi-
tions u(0) = 0 and u(2) = 0, show that u(x) = 0 in [0, 2].

d) Generalize all of the above to solutions of

u′′ + b(x)u′ − c(x)u = 0 on {α ≤ x ≤ β},

where b(x) and c(x) are any continuous functions with c(x) > 0.

7. a) A strictly increasing, continuous, real-valued function f on an open interval I ⊂ R

has an inverse function f−1 which is also strictly increasing, continuous, and defined
on an open interval U . Suppose f ∈ C1(I) and f ′(t0) > 0 at some point t0 ∈ I [here
C1(I) means the function is differentiable on I and this derivative is a continuous
function).

Prove that there is an open sub-interval I ′ ⊂ I on which f−1 exists, is strictly
increasing, and continuous.

b) Using f−1 from the previous part, prove that f−1 ∈ C1(U ′) (where U ′ is its domain)
and that

d

dy
f−1(y) =

1

f ′(x)

if x is chosen to equal f−1(y). This is a special case of the Inverse Function

Theorem, which you will most likely study further (in higher dimensions) in Math
509. [Hint: Let a := f−1(y) and b := f−1(y + h). What does the Mean Value
Theorem say about f(b) − f(a)?]

8. Use the definition of the integral as a Riemann sum to compute
∫ b

0
sin x dx. You will

need the formula for sin θ + sin 2θ + sin 3θ + · · · + sinnθ; see

http://www.math.upenn.edu/∼kazdan/202F13/notes/sum-sin kx.pdf
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9. Let f(x) = sin(1/x) for 0 < x ≤ 2/π while f(0) = 3. Show that f is Riemann integrable
on the interval [0, 2/π].

10. Let f be continuous on the interval [a, b] and assume that f(x) ≥ 0 for all a ≤ x ≤ b.

Use the definition of the integral as a Riemann sum to show that if
∫ b

a
f(x) dx = 0, then

f(x) = 0 everywhere. [You will need to use that since f is continuous, if it is positive
at some point, then it is positive in some interval containing the point.]

11. Prove the Integral Intermediate Value Theorem: If f is real and continuous on [a, b],
then there exists c ∈ (a, b) such that

1

b − a

∫ b

a

f(x) dx = f(c).

Also, give an example showing that such a c may not exist if f is not continuous.

Bonus Problem

[Please give this directly to Professor Kazdan]

B-1 Say a function u(x) satisfies the differential equation

u′′ + b(x)u′ + c(x)u = 0 (1)

on the interval [0, A] and that the coefficients b(x) and c(x) are both bounded, say
|b(x)| ≤ M and |c(x)| ≤ M (if the coefficients are continuous, this is always true for
some M).

a) Define E(x) := 1

2
(u′2 + u2). Show that for some constant γ (depending on M) we

have E′(x) ≤ γE(x). [Suggestion; use the inequality 2xy ≤ x2 + y2.]

b) Use Problem 3(c) above to show that E(x) ≤ eγxE(0) for all x ∈ [0, A].

c) In particular, if u(0) = 0 and u′(0) = 0, show that E(x) = 0 and hence u(x) = 0 for
all x ∈ [0, A]. In other words, if u′′ + b(x)u′ + c(x)u = 0 on the interval [0, A] and
that the functions b(x) and c(x) are both bounded, and if u(0) = 0 and u′(0) − 0,
then the only possibility is that u(x) ≡ 0 for all x ≥ 0.

d) Use this to prove the uniqueness theorem : if v(x) and w(x) both satisfy equation
(1) and have the same initial conditions, v(0) = w(0) and v′(0) = w′(0), then
v(x) ≡ w(x) in the interval [0, A].

[Last revised: November 7, 2014]
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