Problem Set 9

DUE: Thurs. Nov. 13, 2014. Late papers will be accepted until 1:00 PM Friday.

This week. Please read Chapter 7 pages 143-154 in the Rudin text.

Note: We say a function is *smooth* if its derivatives of all orders exist and are continuous.

1. Assume the function f(x) is even, that is, f(-x) = f(x) (Example: $\cos 3x$) and g(x) is odd, that is, g(-x) = -g(x) (Example: $\sin x \cos 3x$). Assuming that f and g are Riemann integrable, show that for any c > 0

$$\int_{-c}^{c} f(x) \, dx = 2 \int_{0}^{c} f(x) \, dx, \qquad \int_{-c}^{c} g(x) \, dx = 0, \qquad \int_{-c}^{c} f(x) g(x) \, dx = 0.$$

There are two approaches, one geometric the other by a computation.

- 2. Let f(x) be a continuous function that satisfies $\int_0^x f(t)e^{3t} dt = c + x \cos(x^2)$. Find the function f and the constant c.
- 3. Say you want to compute $\int_0^2 \sqrt{9 + x^4} \, dx$ using Riemann sums with a partition $P = \{0 = x_0 < x_1 < \dots < x_{N-1} < x_N = 2\}.$

Assume these nodes are equally spaced, so $x_j - x_{j-1} = \Delta x = (2 - 0)/N$. If in the intervals $x_{j-1} \leq x \leq x_j$ you evaluate the integrand at the left end points, how large should you pick N so that the error in your value of the integral is less than 1/100? Justify your assertion. [Note that we are not seeking the smallest N, just one that works.]

4. If f(s) is a smooth function, and c is a constant, let $u(x,t) = \int_{x-ct}^{x+ct} f(s) \, ds$. Show that u(x,t) is a solution of the wave equation

$$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$$

[You may use the standard elementary properties of partial derivatives.]

5. This problem concerns finding a solution u(x) of the boundary value problem

 $u'' + c^2 u = f(x)$ on $[0, \pi]$ with $u(0) = 0, u(\pi) = 0$ (1)

on the interval $[0, \pi]$. Here c > 0 is a constant.

a) Find a formula for the general solution of the *initial value problem*

$$u'' + c^2 u = f(x)$$
 with $u(0) = \alpha, u'(0) = \beta.$ (2)

[The standard approach use the method variation of parameters discussed, for instance, in Math 240 texts and in a Google search.]

- b) If 0 < c < 1 use the formula you found to find a solution of the problem (1). Is this the unique solution?
- c) If there is a solution of (1) for the case c = 1, so u'' + u = f, show that f must satisfy

$$\int_{0}^{\pi} f(x) \sin x \, dx = 0.$$
 (3)

- d) Use the result of part a). to show that for c = 1 if f satisfies condition (3), then the problem (1) has a solution. Thus for c = 1 the orthogonality condition (3) is necessary and sufficient for a solution of (1) to exist. Is this solution unique?
- 6. Define the differential operator L by Lw = -w'' + c(x)w on the interval J = [a, b], where c(x) is some continuous function. Define the inner product by

$$\langle f, g \rangle = \int_{a}^{b} f(x)g(x) \, dx.$$

a) If both u and v are zero on the boundary of J, show that

$$\langle Lu, v \rangle = \langle u, Lv \rangle.$$

- b) Say $Lu = \lambda_1 u$ and $Lv = \lambda_2 v$, where both u and v are zero on the boundary of J. If $\lambda_1 \neq \lambda_2$, show that u(x) and v(x) are orthogonal, that is, $\langle u, v \rangle = 0$, [A special case is Lw = w'' on the interval $[0, \pi]$, $u(x) = \sin x$, $v(x) = \sin 2x$.]
- c) Say Lu = 0 and Lv = f(x), where both u and v are zero on the boundary of J. Show that f must be orthogonal to u, that is, $\langle u, f \rangle = 0$. Thus, if a solution exists, then f must satisfy this. [A special case is Problem 4c).]
- 7. Compute the arc length of the following helix in \mathbb{R}^3 :

$$X(t) = (\cos t, \sin t, t) \quad \text{for} \quad 0 \le t \le 4\pi.$$

8. Let X(t) be the curve $X(t) = (t, t \sin(1/t))$ for $0 < t \le 2/\pi$, while X(0) = 0. Show that this curve is *not* rectifiable: it has infinite arc length.

- 9. Let $f:[0, 1] \to \mathbb{R}$ be a continuous function.
 - a) If $\int_0^1 f(x) dx = 0$, prove that f(x) is positive somewhere and negative somewhere in this interval (unless it is identically zero).
 - b) Use this to show that $||f||_1 := \int_0^1 |f(x)| dx$ is a norm on C([0,1]).
 - c) Show that C([0,1]) with this norm is *not* complete.

10. Compute
$$\lim_{\lambda \to \infty} \int_0^1 |\sin(\lambda x)| \, dx$$
.

11. Let $f \in C([0,\infty))$ be a continuous function with the property that $\lim_{x\to\infty} f(x) = c$. Show that

$$\lim_{T \to \infty} \frac{1}{T} \int_0^T f(x) \, dx = c.$$

- 12. a) If $f:[0, 1] \to \mathbb{R}$ is a continuous function with the property that $\int_0^1 f(x)g(x) dx = 0$ for all continuous functions g, prove that f(x) = 0 for all $x \in [0, 1]$.
 - b) If $f: [0, 1] \to \mathbb{R}$ is a continuous function with the property that $\int_0^1 f(x)g(x) dx = 0$ for all C^1 functions g that satisfy g(0) = g(1) = 0, must it be true that f(x) = 0 for all $x \in [0, 1]$? Proof or counterexample.

Bonus Problems

[Please give this directly to Professor Kazdan]

- B-1 Let f(x) be a continuous function for $0 \le x \le 1$. Evaluate $\lim_{n \to \infty} \int_0^1 n f(x) x^n dx$. (Justify your assertions.)
- B-2 For x > 0 define the function

$$H(x) = \int_1^x \frac{1}{t} \, dt.$$

Since the integrand, 1/t is a continuous function for t > 0, this is Riemann integrable. Use the definition of the Riemann integral directly to show that for any y > 0,

$$H(x) + H(y) = H(xy), \tag{4}$$

thus establishing that H(x) has the basic property of the logarithm. SUGGESTION: First prove (4) assuming $x \ge 1$ (and any y > 0). If $0 < x \le 1$, make a change of variable to reduce to the case $x \ge 1$.

[Last revised: November 16, 2014]