
Math 508, Fall 2014 Jerry L. Kazdan

Problem Set 9

Due: Thurs. Nov. 13, 2014. Late papers will be accepted until 1:00 PM Friday.

This week. Please read Chapter 7 pages 143-154 in the Rudin text.

Note: We say a function is smooth if its derivatives of all orders exist and are continuous.

1. Assume the function f(x) is even, that is, f(−x) = f(x) (Example: cos 3x) and g(x)
is odd, that is, g(−x) = −g(x) (Example: sinx cos 3x). Assuming that f and g are
Riemann integrable, show that for any c > 0

∫ c

−c

f(x) dx = 2

∫ c

0

f(x) dx,

∫ c

−c

g(x) dx = 0,

∫ c

−c

f(x)g(x) dx = 0.

There are two approaches, one geometric the other by a computation.

2. Let f(x) be a continuous function that satisfies

∫ x

0

f(t)e3t dt = c + x − cos(x2).

Find the function f and the constant c.

3. Say you want to compute

∫

2

0

√

9 + x4 dx using Riemann sums with a partition

P = {0 = x0 < x1 < · · · < xN−1 < xN = 2}.

Assume these nodes are equally spaced, so xj − xj−1 = ∆x = (2 − 0)/N . If in the
intervals xj−1 ≤ x ≤ xj you evaluate the integrand at the left end points, how large
should you pick N so that the error in your value of the integral is less than 1/100?
Justify your assertion. [Note that we are not seeking the smallest N , just one that
works.]

4. If f(s) is a smooth function, and c is a constant, let u(x, t) =

∫ x+ct

x−ct

f(s) ds.

Show that u(x, t) is a solution of the wave equation

∂2u

∂t2
= c2 ∂2u

∂x2
.

[You may use the standard elementary properties of partial derivatives.]
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5. This problem concerns finding a solution u(x) of the boundary value problem

u′′ + c2u = f(x) on [0, π] with u(0) = 0, u(π) = 0 (1)

on the interval [0, π]. Here c > 0 is a constant.

a) Find a formula for the general solution of the initial value problem

u′′ + c2u = f(x) with u(0) = α, u′(0) = β. (2)

[The standard approach use the method variation of parameters discussed, for
instance, in Math 240 texts and in a Google search.]

b) If 0 < c < 1 use the formula you found to find a solution of the problem (1). Is this
the unique solution?

c) If there is a solution of (1) for the case c = 1, so u′′ + u = f , show that f must
satisfy

∫ π

0

f(x) sin x dx = 0. (3)

d) Use the result of part a). to show that for c = 1 if f satisfies condition (3), then
the problem (1) has a solution. Thus for c = 1 the orthogonality condition (3) is
necessary and sufficient for a solution of (1) to exist. Is this solution unique?

6. Define the differential operator L by Lw = −w′′ + c(x)w on the interval J = [a, b],
where c(x) is some continuous function. Define the inner product by

〈f, g〉 =

∫ b

a

f(x)g(x) dx.

a) If both u and v are zero on the boundary of J , show that

〈Lu, v〉 = 〈u, Lv〉.

b) Say Lu = λ1u and Lv = λ2v, where both u and v are zero on the boundary of J .
If λ1 6= λ2, show that u(x) and v(x) are orthogonal, that is, 〈u, v〉 = 0, [A special
case is Lw = w′′ on the interval [0, π], u(x) = sin x, v(x) = sin 2x.]

c) Say Lu = 0 and Lv = f(x), where both u and v are zero on the boundary of J .
Show that f must be orthogonal to u, that is, 〈u, f〉 = 0. Thus, if a solution exists,
then f must satisfy this. [A special case is Problem 4c).]

7. Compute the arc length of the following helix in R
3:

X(t) = (cos t, sin t, t) for 0 ≤ t ≤ 4π.

8. Let X(t) be the curve X(t) = (t, t sin(1/t)) for 0 < t ≤ 2/π, while X(0) = 0. Show
that this curve is not rectifiable: it has infinite arc length.
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9. Let f : [0, 1] → R be a continuous function.

a) If
∫

1

0
f(x) dx = 0, prove that f(x) is positive somewhere and negative somewhere

in this interval (unless it is identically zero).

b) Use this to show that ‖f‖1 :=

∫

1

0

|f(x)| dx is a norm on C([0, 1]).

c) Show that C([0, 1]) with this norm is not complete.

10. Compute lim
λ→∞

∫

1

0

|sin(λx)| dx.

11. Let f ∈ C([0,∞)) be a continuous function with the property that limx→∞ f(x) = c.
Show that

lim
T→∞

1

T

∫ T

0

f(x) dx = c.

12. a) If f : [0, 1] → R is a continuous function with the property that
∫

1

0
f(x)g(x) dx = 0

for all continuous functions g, prove that f(x) = 0 for all x ∈ [0, 1].

b) If f : [0, 1] → R is a continuous function with the property that
∫

1

0
f(x)g(x) dx = 0

for all C1 functions g that satisfy g(0) = g(1) = 0, must it be true that f(x) = 0
for all x ∈ [0, 1]? Proof or counterexample.

Bonus Problems

[Please give this directly to Professor Kazdan]

B-1 Let f(x) be a continuous function for 0 ≤ x ≤ 1. Evaluate lim
n→∞

∫

1

0

nf(x)xn dx.

(Justify your assertions.)

B-2 For x > 0 define the function

H(x) =

∫ x

1

1

t
dt.

Since the integrand, 1/t is a continuous function for t > 0, this is Riemann integrable.

Use the definition of the Riemann integral directly to show that for any y > 0,

H(x) + H(y) = H(xy), (4)

thus establishing that H(x) has the basic property of the logarithm.
Suggestion: First prove (4) assuming x ≥ 1 (and any y > 0). If 0 < x ≤ 1, make a
change of variable to reduce to the case x ≥ 1.

[Last revised: November 16, 2014]
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