Problem Set 9

DuE: Thurs. Nov. 13, 2014. Late papers will be accepted until 1:00 PM Friday.

This week. Please read Chapter 7 pages 143-154 in the Rudin text.

Note: We say a function is smooth if its derivatives of all orders exist and are continuous.

1. Assume the function $f(x)$ is even, that is, $f(-x)=f(x)$ (Example: $\cos 3 x$) and $g(x)$ is odd, that is, $g(-x)=-g(x)$ (Example: $\sin x \cos 3 x)$. Assuming that f and g are Riemann integrable, show that for any $c>0$

$$
\int_{-c}^{c} f(x) d x=2 \int_{0}^{c} f(x) d x, \quad \int_{-c}^{c} g(x) d x=0, \quad \int_{-c}^{c} f(x) g(x) d x=0
$$

There are two approaches, one geometric the other by a computation.
2. Let $f(x)$ be a continuous function that satisfies $\int_{0}^{x} f(t) e^{3 t} d t=c+x-\cos \left(x^{2}\right)$.

Find the function f and the constant c.
3. Say you want to compute $\int_{0}^{2} \sqrt{9+x^{4}} d x$ using Riemann sums with a partition

$$
P=\left\{0=x_{0}<x_{1}<\cdots<x_{N-1}<x_{N}=2\right\}
$$

Assume these nodes are equally spaced, so $x_{j}-x_{j-1}=\Delta x=(2-0) / N$. If in the intervals $x_{j-1} \leq x \leq x_{j}$ you evaluate the integrand at the left end points, how large should you pick N so that the error in your value of the integral is less than $1 / 100 ?$ Justify your assertion. [Note that we are not seeking the smallest N, just one that works.]
4. If $f(s)$ is a smooth function, and c is a constant, let $u(x, t)=\int_{x-c t}^{x+c t} f(s) d s$.

Show that $u(x, t)$ is a solution of the wave equation

$$
\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}
$$

[You may use the standard elementary properties of partial derivatives.]
5. This problem concerns finding a solution $u(x)$ of the boundary value problem

$$
\begin{equation*}
u^{\prime \prime}+c^{2} u=f(x) \quad \text { on } \quad[0, \pi] \quad \text { with } \quad u(0)=0, u(\pi)=0 \tag{1}
\end{equation*}
$$

on the interval $[0, \pi]$. Here $c>0$ is a constant.
a) Find a formula for the general solution of the initial value problem

$$
\begin{equation*}
u^{\prime \prime}+c^{2} u=f(x) \quad \text { with } \quad u(0)=\alpha, u^{\prime}(0)=\beta \tag{2}
\end{equation*}
$$

[The standard approach use the method variation of parameters discussed, for instance, in Math 240 texts and in a Google search.]
b) If $0<c<1$ use the formula you found to find a solution of the problem (1). Is this the unique solution?
c) If there is a solution of (1) for the case $c=1$, so $u^{\prime \prime}+u=f$, show that f must satisfy

$$
\begin{equation*}
\int_{0}^{\pi} f(x) \sin x d x=0 \tag{3}
\end{equation*}
$$

d) Use the result of part a). to show that for $c=1$ if f satisfies condition (3), then the problem (1) has a solution. Thus for $c=1$ the orthogonality condition (3) is necessary and sufficient for a solution of (1) to exist. Is this solution unique?
6. Define the differential operator L by $L w=-w^{\prime \prime}+c(x) w$ on the interval $J=[a, b]$, where $c(x)$ is some continuous function. Define the inner product by

$$
\langle f, g\rangle=\int_{a}^{b} f(x) g(x) d x
$$

a) If both u and v are zero on the boundary of J, show that

$$
\langle L u, v\rangle=\langle u, L v\rangle .
$$

b) Say $L u=\lambda_{1} u$ and $L v=\lambda_{2} v$, where both u and v are zero on the boundary of J. If $\lambda_{1} \neq \lambda_{2}$, show that $u(x)$ and $v(x)$ are orthogonal, that is, $\langle u, v\rangle=0$, [A special case is $L w=w^{\prime \prime}$ on the interval [$0, \pi$], $u(x)=\sin x, v(x)=\sin 2 x$.]
c) Say $L u=0$ and $L v=f(x)$, where both u and v are zero on the boundary of J. Show that f must be orthogonal to u, that is, $\langle u, f\rangle=0$. Thus, if a solution exists, then f must satisfy this. [A special case is Problem 4c).]
7. Compute the arc length of the following helix in \mathbb{R}^{3} :

$$
X(t)=(\cos t, \sin t, t) \quad \text { for } \quad 0 \leq t \leq 4 \pi .
$$

8. Let $X(t)$ be the curve $X(t)=(t, t \sin (1 / t))$ for $0<t \leq 2 / \pi$, while $X(0)=0$. Show that this curve is not rectifiable: it has infinite arc length.
9. Let $f:[0,1] \rightarrow \mathbb{R}$ be a continuous function.
a) If $\int_{0}^{1} f(x) d x=0$, prove that $f(x)$ is positive somewhere and negative somewhere in this interval (unless it is identically zero).
b) Use this to show that $\|f\|_{1}:=\int_{0}^{1}|f(x)| d x$ is a norm on $C([0,1])$.
c) Show that $C([0,1])$ with this norm is not complete.
10. Compute $\lim _{\lambda \rightarrow \infty} \int_{0}^{1}|\sin (\lambda x)| d x$.
11. Let $f \in C([0, \infty))$ be a continuous function with the property that $\lim _{x \rightarrow \infty} f(x)=c$. Show that

$$
\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} f(x) d x=c
$$

12. a) If $f:[0,1] \rightarrow \mathbb{R}$ is a continuous function with the property that $\int_{0}^{1} f(x) g(x) d x=0$ for all continuous functions g, prove that $f(x)=0$ for all $x \in[0,1]$.
b) If $f:[0,1] \rightarrow \mathbb{R}$ is a continuous function with the property that $\int_{0}^{1} f(x) g(x) d x=0$ for all C^{1} functions g that satisfy $g(0)=g(1)=0$, must it be true that $f(x)=0$ for all $x \in[0,1]$? Proof or counterexample.

Bonus Problems

[Please give this directly to Professor Kazdan]
B-1 Let $f(x)$ be a continuous function for $0 \leq x \leq 1$. Evaluate $\lim _{n \rightarrow \infty} \int_{0}^{1} n f(x) x^{n} d x$. (Justify your assertions.)

B-2 For $x>0$ define the function

$$
H(x)=\int_{1}^{x} \frac{1}{t} d t .
$$

Since the integrand, $1 / t$ is a continuous function for $t>0$, this is Riemann integrable.
Use the definition of the Riemann integral directly to show that for any $y>0$,

$$
\begin{equation*}
H(x)+H(y)=H(x y) \tag{4}
\end{equation*}
$$

thus establishing that $H(x)$ has the basic property of the logarithm.
Suggestion: First prove (4) assuming $x \geq 1$ (and any $y>0$). If $0<x \leq 1$, make a change of variable to reduce to the case $x \geq 1$.
[Last revised: November 16, 2014]

