Maximal Ideals in $C([0,1])$

For $c \in[0,1]$ let $I_{c}=\{f \in C([0,1]) \mid \cdot: f(c)=0\}$. This is clearly an ideal.
Theorem I_{c} is a maximal ideal. Conversely, every maximal ideal in $C([0,1]$ (other than $C([0,1])$ itself $)$ has this form.
Proof Say I_{c} is contained in some larger ideal J. We will show that $J=C([0,1])$ so then I_{c} is a maximal ideal.
Say $g \in J$ is not in I_{c}, so $g(c) \neq 0$. Then $h(x):=g(x) / g(c) \in J$ and $(h(x)-1) \in I_{c}$. Consequently

$$
1=h(x)+[1-h(x)] \in J .
$$

Thus $J=C([0,1])$. Note this proof did not use the compactness of $[0,1]$.
Conversely, let J be any maximal ideal in $C([0,1])$. Assume J is not of the form I_{c} for any $c \in[0,1]$. Then for every $c \in[0,1]$ there ia an $f_{c} \in J$ with $f(c) \neq 0$. Since f_{c} is continuous, there is a neighborhood, V_{c}, of c where $f(x) \neq 0$. These open sets cover $[0,1]$.
Because [0, 1] is compact, there is a finite sub-cover: $[0,1] \subset V_{c_{1}} \cup V_{c_{2}} \cup \cdots \cup V_{c_{N}}$. Let

$$
g(x)=f_{c_{1}}^{2}(x)+f_{c_{2}}^{2}(x)+\cdots+f_{c_{N}}^{2}(x) .
$$

Since the function $f_{c_{j}} \neq 0$ on $V_{c_{j}}$ we have $g(x)>0$ on $[0,1]$. Therefore $1 / g(x) \in J$ and hence $1=g(x) / g(x) \in J$. Consequently $J=C([0,1])$.

