1. Say one has a real normed linear space whose norm satisfies the parallelogram identity
\[\|x + y\|^2 + \|x - y\|^2 = 2\|x\|^2 + 2\|y\|^2. \]
Define the bilinear form \(B(x, y)\) by the rule
\[B(x, y) := \frac{1}{4} \left[\|x + y\|^2 - \|x - y\|^2 \right]. \]
Show that \(B(x, y)\) has all of the properties of an inner product including \(B(x, x) = \|x\|^2\).

[First observed by von Neumann]

MORAL: If a norm satisfies the parallelogram identity, then one can use it to define a compatible inner product. The parallelogram identity is both necessary and sufficient.

2. Consider \(\mathbb{R}^2\) with vectors \(X = (x_1, x_2)\) having the \(p\) norm, \(\|x\|_p := (|x_1|^p + |x_2|^p)^{1/p}, \quad p \geq 1\). Show that if \(p \neq 2\), this norm does not arise from an inner product.

3. Consider the Fourier series (formally, so we don’t yet worry about convergence)
\[f(x) = \sum_{-\infty < k < \infty} c_k e^{ikx} \quad \text{where} \quad c_k \in \mathbb{C} \] \hspace{1cm} (1)
with the complex inner product \(\langle f, g \rangle = \int_{-\pi}^{\pi} f(x)\overline{g(x)} \, dx\).

a) Show that the functions \(e^{ikx}\) for integers \(k = 0, \pm 1, \pm 2, \ldots\) are mutually orthogonal.

b) Show that \(c_k = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) e^{-ikx} \, dx\). The \(c_k\) are the Fourier coefficients of \(f\).

c) Assuming that equality holds in (1), show that formally
\[\|f\|^2 = \int_{-\pi}^{\pi} |f(t)|^2 = 2\pi \sum_{-\infty < k < \infty} |c_k|^2. \]

This is a generalization of the Pythagorean theorem.

d) Define the linear map \(P_N\) by \((P_Nf)(x) := \sum_{|k| \leq N} c_k e^{ikx}\). Show that
\[P_N^2 = P_N, \quad \text{that is,} \quad P_N(P_Nf) = P_Nf \quad \text{for any } f \]
and also that
\[\langle P_Nf, g \rangle = \langle f, P_Ng \rangle \quad \text{for any } f, g \]
(the second property says that \(P_N\) is self-adjoint). These two properties are often summarized by saying that the map \(P_N\) is an orthogonal projection.
e) Show that \(\|f\|^2 = \|P_N f\|^2 + \|(I - P_N) f\|^2 \) and hence that \(\|P_N f\| \leq \|f\| \).

4. Let \(f(x) = x^2 \) for \(-\pi \leq x \leq \pi \).
 a) Find the Fourier series \(\sum_{-\infty}^{\infty} c_k e^{ikx} \) in \(L_2(-\pi, \pi) \) for \(f \).
 b) Use this to compute \(\sum_{k=1}^{\infty} \frac{1}{n^4} \).

5. In any vector space \(V \) with an inner product, let \(\mathcal{W} \) be a subspace. We want to define the orthogonal projection of \(v \in V \) into \(\mathcal{W} \), written \(P_{\mathcal{W}} v \). One approach is to assume we have written \(v \) as
 \[v = v_1 + v_2, \quad \text{where} \quad v_1 \in \mathcal{W} \quad \text{and} \quad v_2 \perp \mathcal{W}. \]

Then we define the operator \(P_{\mathcal{W}} \) as \(P_{\mathcal{W}} v := v_1 \).

 a) Show that \(P_{\mathcal{W}} v \) is the point in \(\mathcal{W} \) that is closest to \(v \) by proving that for any \(w \in \mathcal{W} \)
 \[\|v - w\|^2 = \|v - P_{\mathcal{W}} v\|^2 + \|P_{\mathcal{W}} v - w\|^2. \]

 b) As an application of this, let \(\mathcal{T}_N \) be the subspace of trigonometric polynomials of degree at most \(N \), that is, functions of the form \(\sum_{|k| \leq N} c_k e^{ikx} \). For short, write \(P_N := P_{\mathcal{T}_N} \). Given a function \(f \), show that for any function \(g \in \mathcal{T}_N \) one has \(\|f - P_N f\| \leq \|f - g\| \). Thus, in this norm the Fourier projection \(P_{\mathcal{T}_N} f \) is closer to \(f \) than any other function in \(\mathcal{T}_N \).

 c) Let \(D = d/dx \). Show that \(P_N D = DP_N \), that is, \(P_N(Df) = D(P_Nf) \) for all continuously differentiable \(2\pi \)-periodic functions \(f \).

[Last revised: April 5, 2005]