
1. Let \(\gamma : \mathbb{R} \to \mathbb{R}^3 \) describe a smooth curve and let \(V \in \mathbb{R}^3, V \neq 0 \). be a fixed vector. Assume \(\gamma'(t) \perp V \) for all \(t \).
 a) If \(\gamma(0) \perp V \), show that \(\gamma(t) \perp V \) for all \(t \).
 b) Even if \(\gamma(0) \) is not perpendicular to \(V \), show that \(\gamma(t) \) lies in a two-dimensional plane and find the equation of this plane.

2. The curve \(y = x^{2/3} \) \(-\infty < x < \infty\) has a cusp at the origin (as you can see from a sketch). Find smooth \((C^\infty) \) functions \(x(t), y(t), -\infty < t < \infty \) that parameterize this curve. [The point of this is that even though a curve \(\gamma(t) = (x(t), y(t)) \) may have a parameterization by smooth functions \(x(t), y(t) \), we might not want to say that the curve is smooth.]

3. Find a smooth function \(f(x) \), \(x \in \mathbb{R} \) with the properties: \(f(x) = 1 \) for \(|x| \leq 1 \), \(f(x) = 0 \) for \(|x| \geq 2 \).

4. a) Let \(y = f(x) \) define a smooth curve in the plane. If \(P, Q \) and \(R \) are three distinct points on the curve, let \(\Gamma_{PQR} \) be the circle that passes through these three points (we allow that \(\Gamma_{PQR} \) might be a straight line, which can be viewed as a circle with infinite radius). In the limit as both \(Q \to P \) and \(R \to P \) show that this circle \(\Gamma_P \) is tangent to the curve at \(P \) and that in addition the second derivative of the curve and the circle agree at \(P \). [If the circle \(\Gamma_P \) has radius \(R \), we say that the curvature of \(y = f(x) \) at \(P \) is \(1/R \).]
 b) Use this to obtain a formula for the curvature in terms of \(f \), \(f' \), and \(f'' \).

5. The \(n^{th} \) Legendre polynomial is \(P_n(x) = \frac{d^n}{dx^n}(x^2 - 1)^n \).
 a) Show that \(P_n(x) \) is a polynomial of degree \(n \).
 b) Show that \(P_n(x) \) has exactly \(n \) real distinct zeroes in the interval \(\{-1 < x < 1\} \).

6. Let \(A(t) = (a_{ij}(t)) \) be a square matrix of real numbers whose entries are smooth functions of \(t \in \mathbb{R} \) and assume that \(A(0) \) is invertible.
 a) Find a formula for the derivative of the inverse matrix, \(A^{-1} (t) \) in terms of \(A(0) \) and \(A'(0) \). [SUGGESTION: begin from \(A(t)A^{-1}(t) = I \).]
b) Recall that the trace of a square matrix is the sum of its diagonal elements. Show that
\[\frac{d}{dt} \det(A(t))|_{t=0} = [\det(A(0))] \text{trace} \left(A^{-1}(0)A'(0) \right). \]

[SUGGESTION: First do the special case where \(A(0) = I \) and then reduce the general case to this special case.]

Bonus Problem: Let \(f(x, y) : \mathbb{R}^2 \to \mathbb{R} \) be a smooth function with exactly one critical point, and that critical point is a strict local minimum (say the critical point is at the origin and \(f''(0, 0) = I \)). Can one conclude that the origin is the *global* minimum? Proof or counterexample.