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Write s = σ + it and p will always be a prime number. We will show that theRiemann Zeta
Function

ζ(s) =
∞

∑
n

1
ns = ∏

primesp

(
1− 1

ps

)−1

(1)

has no zeroes on the lineσ = 1. The above factorization involving the primes was found by Euler
for real s. Riemann made the observation that one gains insight by continuingζ(s) to complexs.
Note that since|ns|= nσ , then for anyδ > 0 the series for the zeta function converges uniformly in
the half-plane Res≥ 1+δ so ζ(s) is analytic in the half-plane Re{s}> 1.

We follow Hadamard’s original version with a simplification by Mertens. Most current expositions
give a slighter shorter proof, but it then becomes too mysterious for my taste.

The first step is to continueζ(s) analytically to a larger region.

Lemma 1 ζ(s)− 1
s−1

can be continued to the half-plane Re{s}> 0 as a holomorphic function.

REMARK With a bit more work Riemann even showed thatζ(s)− 1
s−1 can be continued as an entire

function.

Proof of the Lemma. For Re{s}> 1

ζ(s)− 1
s−1

=
∞

∑
n=1

1
ns −

Z ∞

1

1
xs dx=

∞

∑
n=1

Z n+1

n

(
1
ns −

1
xs

)
dx. (2)

Although the mean value theorem is not valid for complex-valuedC1 functions f (t) , theinequality

| f (b)− f (a)| ≤
Z b

a
| f ′(t)|dt ≤ max

a≤t≤b
| f ′(t)|(|b−a|

is still correct. Using it withf (t) = t−s, n≤ t we obtain the estimate∣∣∣∣Z n+1

n

(
1
ns −

1
xs

)
dx

∣∣∣∣≤ max
∣∣∣ s
xs+1

∣∣∣≤ |s|
nRe{s}+1

.

Thus for anyδ > 0 the infinite series on the right side of (2) converges absolutely and uniformly
in the half-plane Re{s} ≥ δ , so it gives an analytic continuation of the right side of (2), and hence
ζ(s) to the half-plane Re{s}> 0.

Theorem 2 ζ(s) has no zeroes on the line Re{s}= 1.

Since for|t|< 1 we know− log(1− t) = t +
t2

2
+

t3

3
+

t4

4
+ · · · , then

logζ(s) =−∑
p

log(1− p−s) = ∑
p

∞

∑
n=1

p−ns

n

1



that is,

ζ(s) = exp

[
∑
p

∞

∑
n=1

p−ns

n

]
.

Becauses= σ+ it we havep−ns = p−nσ p−nit = p−nσe−nit logp so

Re{p−ns}= p−nσ cos(ntθp), where θp = logp.

Therefore

|ζ(s)|= exp Re

{
∑
p

∞

∑
n=1

p−ns

n

}
= exp

[
∑
p

∞

∑
n=1

p−nσ

n
cos(ntθp)

]
.

The key observation is that the dependence of|ζ(σ + it )| on t arises only in the cos(ntθp) term.
Since cos2x == 2cos2x−1, This gives a relationship betweenζ(σ) , |ζ(σ+ it )| , and |ζ(σ+2it )| .
To exploit this, for any integersα , β , andγ note that

ζ(σ)α|ζ(σ+ it )|β|ζ(σ+2it )|γ = exp

(
∑
p

∞

∑
n=1

p−nσ

n
[α+βcos(ntθp)+ γcos(2ntθp)]

)
. (3)

However, writingu = cosx and using cos2x == 2cos2x−1,

α+βcosx+ γcos2x = (α− γ)+βcosx+2γcos2x = 2γ
(

u2 +
β
2γ

u+
α− γ

2γ

)
.

Pick β
2γ = 2 and α−γ

2γ = 1, then, with sayγ = 1, soα = 3 andβ = 4 (there are many other equally
useful choices),

α+βcosx+ γcos2x = 2(1+u)2 ≥ 0.

Thus, for this choice the exponent in (3) is non-negative so for anys= σ+ it with σ > 0.

ζ(σ)3|ζ(σ+ it )|4|ζ(σ+2it )| ≥ 1. (4)

We will use this to show that the assumption thatζ(1+ ib) = 0 gives a contradiction. Letσ = 1+δ .
Since on Re{s}= 1 we knowζ(s) is analytic except for a simple pole ats= 1, then for sufficiently
small δ > 0

|ζ(1+δ+ ib)| ≤ constδ, |ζ(1+δ+2ib)| ≤ const, and |ζ(1+δ)| ≤ const
δ

.

Thus, for any real positiveα , β , γ :

ζ(1+δ)α|ζ(1+δ+ ib)|β|ζ(1+δ+2ib)|γ ≤ constδ−αδβ (5)

so if β > α , the right hand side of (5) converges to zero asδ → 0. This contradicts (4) for the
particular values ofα = 3, β = 4, andγ = 1.
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