Write $s=\sigma+i t$ and p will always be a prime number. We will show that the Riemann Zeta Function

$$
\begin{equation*}
\zeta(s)=\sum_{n}^{\infty} \frac{1}{n^{s}}=\prod_{\text {primes } p}\left(1-\frac{1}{p^{s}}\right)^{-1} \tag{1}
\end{equation*}
$$

has no zeroes on the line $\sigma=1$. The above factorization involving the primes was found by Euler for real s. Riemann made the observation that one gains insight by continuing $\zeta(s)$ to complex s. Note that since $\left|n^{s}\right|=n^{\sigma}$, then for any $\delta>0$ the series for the zeta function converges uniformly in the half-plane $\operatorname{Re} s \geq 1+\delta$ so $\zeta(s)$ is analytic in the half-plane $\operatorname{Re}\{s\}>1$.

We follow Hadamard's original version with a simplification by Mertens. Most current expositions give a slighter shorter proof, but it then becomes too mysterious for my taste.

The first step is to continue $\zeta(s)$ analytically to a larger region.
Lemma $1 \zeta(s)-\frac{1}{s-1}$ can be continued to the half-plane $\operatorname{Re}\{s\}>0$ as a holomorphic function.
REMARK With a bit more work Riemann even showed that $\zeta(s)-\frac{1}{s-1}$ can be continued as an entire function.
Proof of the Lemma. For $\operatorname{Re}\{s\}>1$

$$
\begin{equation*}
\zeta(s)-\frac{1}{s-1}=\sum_{n=1}^{\infty} \frac{1}{n^{s}}-\int_{1}^{\infty} \frac{1}{x^{s}} d x=\sum_{n=1}^{\infty} \int_{n}^{n+1}\left(\frac{1}{n^{s}}-\frac{1}{x^{s}}\right) d x \tag{2}
\end{equation*}
$$

Although the mean value theorem is not valid for complex-valued C^{1} functions $f(t)$, the inequality

$$
|f(b)-f(a)| \leq \int_{a}^{b}\left|f^{\prime}(t)\right| d t \leq \max _{a \leq t \leq b}\left|f^{\prime}(t)\right|(|b-a|
$$

is still correct. Using it with $f(t)=t^{-s}, n \leq t$ we obtain the estimate

$$
\left|\int_{n}^{n+1}\left(\frac{1}{n^{s}}-\frac{1}{x^{s}}\right) d x\right| \leq \max \left|\frac{s}{x^{s+1}}\right| \leq \frac{|s|}{n^{\operatorname{Re}\{s\}+1}}
$$

Thus for any $\delta>0$ the infinite series on the right side of (2) converges absolutely and uniformly in the half-plane $\operatorname{Re}\{s\} \geq \delta$, so it gives an analytic continuation of the right side of (2), and hence $\zeta(s)$ to the half-plane $\operatorname{Re}\{s\}>0$.

Theorem $2 \zeta(s)$ has no zeroes on the line $\operatorname{Re}\{s\}=1$.
Since for $|t|<1$ we know $-\log (1-t)=t+\frac{t^{2}}{2}+\frac{t^{3}}{3}+\frac{t^{4}}{4}+\cdots$, then

$$
\log \zeta(s)=-\sum_{p} \log \left(1-p^{-s}\right)=\sum_{p} \sum_{n=1}^{\infty} \frac{p^{-n s}}{n}
$$

that is,

$$
\zeta(s)=\exp \left[\sum_{p} \sum_{n=1}^{\infty} \frac{p^{-n s}}{n}\right]
$$

Because $s=\sigma+$ it we have $p^{-n s}=p^{-n \sigma} p^{-n i t}=p^{-n \sigma} e^{-n i t \log p}$ so

$$
\operatorname{Re}\left\{p^{-n s}\right\}=p^{-n \sigma} \cos \left(n t \theta_{p}\right), \quad \text { where } \quad \theta_{p}=\log p
$$

Therefore

$$
|\zeta(s)|=\exp \operatorname{Re}\left\{\sum_{p} \sum_{n=1}^{\infty} \frac{p^{-n s}}{n}\right\}=\exp \left[\sum_{p} \sum_{n=1}^{\infty} \frac{p^{-n \sigma}}{n} \cos \left(n t \theta_{p}\right)\right]
$$

The key observation is that the dependence of $|\zeta(\sigma+i t)|$ on t arises only in the $\cos \left(n t \theta_{p}\right)$ term. Since $\cos 2 x==2 \cos ^{2} x-1$, This gives a relationship between $\zeta(\sigma),|\zeta(\sigma+i t)|$, and $|\zeta(\sigma+2 i t)|$. To exploit this, for any integers α, β, and γ note that

$$
\begin{equation*}
\zeta(\sigma)^{\alpha}|\zeta(\sigma+i t)|^{\beta}|\zeta(\sigma+2 i t)|^{\gamma}=\exp \left(\sum_{p} \sum_{n=1}^{\infty} \frac{p^{-n \sigma}}{n}\left[\alpha+\beta \cos \left(n t \theta_{p}\right)+\gamma \cos \left(2 n t \theta_{p}\right)\right]\right) \tag{3}
\end{equation*}
$$

However, writing $u=\cos x$ and using $\cos 2 x==2 \cos ^{2} x-1$,

$$
\alpha+\beta \cos x+\gamma \cos 2 x=(\alpha-\gamma)+\beta \cos x+2 \gamma \cos ^{2} x=2 \gamma\left(u^{2}+\frac{\beta}{2 \gamma} u+\frac{\alpha-\gamma}{2 \gamma}\right)
$$

Pick $\frac{\beta}{2 \gamma}=2$ and $\frac{\alpha-\gamma}{2 \gamma}=1$, then, with say $\gamma=1$, so $\alpha=3$ and $\beta=4$ (there are many other equally useful choices),

$$
\alpha+\beta \cos x+\gamma \cos 2 x=2(1+u)^{2} \geq 0
$$

Thus, for this choice the exponent in (3) is non-negative so for any $s=\sigma+i t$ with $\sigma>0$.

$$
\begin{equation*}
\zeta(\sigma)^{3}|\zeta(\sigma+i t)|^{4}|\zeta(\sigma+2 i t)| \geq 1 \tag{4}
\end{equation*}
$$

We will use this to show that the assumption that $\zeta(1+i b)=0$ gives a contradiction. Let $\sigma=1+\delta$. Since on $\operatorname{Re}\{s\}=1$ we know $\zeta(s)$ is analytic except for a simple pole at $s=1$, then for sufficiently small $\delta>0$

$$
|\zeta(1+\delta+i b)| \leq \text { const } \delta, \quad|\zeta(1+\delta+2 i b)| \leq \text { const }, \quad \text { and } \quad|\zeta(1+\delta)| \leq \frac{\text { const }}{\delta}
$$

Thus, for any real positive α, β, γ :

$$
\begin{equation*}
\zeta(1+\delta)^{\alpha}|\zeta(1+\delta+i b)|^{\beta}|\zeta(1+\delta+2 i b)|^{\gamma} \leq \operatorname{const} \delta^{-\alpha} \delta^{\beta} \tag{5}
\end{equation*}
$$

so if $\beta>\alpha$, the right hand side of (5) converges to zero as $\delta \rightarrow 0$. This contradicts (4) for the particular values of $\alpha=3, \beta=4$, and $\gamma=1$.

