Final Examination

Directions: Answer all 5 questions. Time: One hour. You may use one sheet of A4 paper with notes on one side. Try to communicate your ideas clearly.

1. Let \(f \in C^2(\mathbb{R}) \) be a \(2\pi \) periodic function, so \(f \) and its first two derivatives are \(2\pi \) periodic. Say \(f(x) = \sum_k c_k e^{ikx} \) is its Fourier series.
 a) Show there is a constant \(m \) so that \(|c_k| \leq \frac{m}{1+k^2} \).
 b) Show that the Fourier series converges uniformly.

2. Let \(u(x,t) \) be a solution of \(u_{tt} + b(x,t)u_t = u_{xx} \) for \(0 < x < L \). Assume \(u \) satisfies the initial conditions \(u(x,0) = 0 \) and \(u_t(x,0) = 0 \) and boundary conditions \(u(0,t) = u(L,t) = 0 \).
 a) If \(b(x,t) \geq 0 \), show that \(u(x,t) = 0 \) for all \(t > 0 \).
 b) If \(|b(x,t)| \leq M \) for some constant \(M \) show that \(u(x,t) = 0 \) for all \(t > 0 \).

3. Let \(\Omega \subset \mathbb{R}^2 \) be a bounded open set and \(u(x,t) \) a solution of \(u_t = \Delta u \) in \(\Omega \) with \(u(x,t) = f(x) \) for \(x \in \partial \Omega \). Also, let \(v(x) \) satisfy \(\Delta v = 0 \) in \(\Omega \) with \(v(x) = f(x) \) on \(\partial \Omega \). Show that, in an appropriate sense, \(\lim_{t \to \infty} u(x,t) = v(x) \).

4. Let \(\Omega \subset \mathbb{R}^3 \) be a bounded open set. Assume \(Lu := -\Delta u + c(x)u \geq 0 \), where \(c(x) > 0 \) is a continuous function.
 a) Show that \(u \) cannot assume a negative minimum at any point of \(\Omega \).
 b) If \(u \) and \(v \) satisfy \(Lu = f \) and \(Lv = g \), respectively, in \(\Omega \) with \(f > g \) in \(\Omega \) and \(u = v \) on \(\partial \Omega \), what can you conclude? Proof?

5. Pick a topic (or technique) in the course that interested you and give a brief summary of it. You may include theorems, proofs, ideas, examples, special cases, etc. You don’t need to be really precise, but give the main ideas – as if you were describing it to a friend at coffee.
 [Please don’t jabber. First think and plan calmly. Please do not write more than one page.]