\qquad

Question:

Solve the following initial-value problem:

$$
y^{\prime \prime}-2 y^{\prime}+2 y=0, \quad y(0)=1, \quad y^{\prime}(0)=0
$$

Extra credit $(+\mathbf{1})$: Does the above equation describe motion of mass on a spring? If so, state whether the motion is underdamped, critically damped, or overdamped.

Solution:
The auxiliary polynomial $r^{2}-2 r+2=0$ has root $1 \pm i$, therefore the general solution is

$$
y(t)=c_{1} \mathrm{e}^{t} \cos t+c_{2} \mathrm{e}^{t} \sin t
$$

plug in the initial conditions, we get

$$
c_{1}=1, c_{2}=1
$$

so

$$
y(t)=\mathrm{e}^{t} \cos t+\mathrm{e}^{t} \sin t
$$

This does not describe motion of mass on a spring, because in the equation, y^{\prime} term has negative coefficient, while the equation of spring-mass system should have non-nagative coefficients.
One can also see this from solution, as $y(t)$ can approach to infinity when $t \rightarrow+\infty$, and it violates conservation of energy (this system has no external force, so total energy is conserved).

