\qquad

Question:

Determine the general solution to the system $\mathbf{x}(t)^{\prime}=A \mathbf{x}(t)$ where

$$
A=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right]
$$

Extra credit $(+\mathbf{2})$: Suppose a solution $\mathbf{x}(t)$ to the above equation satisfies

$$
\lim _{t \rightarrow+\infty} \mathbf{x}(t)=\left(\begin{array}{c}
1 \\
a \\
b
\end{array}\right)
$$

where $-1<a, b<1$, determine a and b.

Solution:
Notice in this case, A is diagonal, so its exponential is convenient to compute, and general solution is:

$$
\mathrm{e}^{A t}\left(\begin{array}{c}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \mathrm{e}^{t} & 0 \\
0 & 0 & \mathrm{e}^{-t}
\end{array}\right)\left(\begin{array}{c}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right)=\left(\begin{array}{c}
c_{1} \\
c_{2} \mathrm{e}^{t} \\
c_{3} \mathrm{e}^{-t}
\end{array}\right)
$$

If $c_{2} \neq 0, c \mathrm{e}^{t} \rightarrow \infty$ as $t \rightarrow+\infty$, then a will not be finite. So we need $c_{2}=0$, therefore $a=0$. No matter what c_{3} is, $c_{3} \mathrm{e}^{-t} \rightarrow 0$ as $t \rightarrow+\infty$, so $b=0$.
Another appoach is: the limit is a solution (steady state solution) to the system of differential equation, plug in, we get:

$$
\frac{d}{d t}\left(\begin{array}{l}
1 \\
a \\
b
\end{array}\right)=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right)\left(\begin{array}{l}
1 \\
a \\
b
\end{array}\right)=\left(\begin{array}{l}
0 \\
a \\
b
\end{array}\right)
$$

therefore $a=b=0$.

