MATH 240 Quiz 9

Name: _____

Question:

Solve the differential equation:

$$y'' + y' + y = x^2 + x + 1$$

Solution:

First solve for the homogeneous equation:

$$y_c'' + y_c' + y_c = 0$$

its auxiliary polynomial $r^2 + r + 1$ has two roots: $r = -\frac{1}{2} \pm \frac{\sqrt{3}}{2}i$, therefore the general solutions are:

$$y_c = C_1 e^{-\frac{1}{2}x} \cos \frac{\sqrt{3}}{2}x + C_2 e^{-\frac{1}{2}x} \sin \frac{\sqrt{3}}{2}x$$

Next we solve for a particular solution y_p , we can use trial solution $y_p = Ax^2 + Bx + C$, since

$$y''_{p} + y'_{p} + y_{p} = 2A + 2Ax + B + Ax^{2} + Bx + C$$
$$= Ax^{2} + (2A + B)x + (2A + B + C)$$

compare it with coefficients of $x^2 + x + 1$, we need A = 1, 2A + B = 1, 2A + B + C = 1. Therefore A = 1, B = -1, C = 0, and the particular solution is $y_p = x^2 - x$.

The general solution to the given equation is

$$y = y_c + y_p$$

= $C_1 e^{-\frac{1}{2}x} \cos \frac{\sqrt{3}}{2}x + C_2 e^{-\frac{1}{2}x} \sin \frac{\sqrt{3}}{2}x + x^2 - x$