\qquad

Question:

Solve the differential equation:

$$
y^{\prime \prime}+y^{\prime}+y=x^{2}+x+1
$$

Solution:
First solve for the homogeneous equation:

$$
y_{c}^{\prime \prime}+y_{c}^{\prime}+y_{c}=0
$$

its auxilary polynomial $r^{2}+r+1$ has two roots: $r=-\frac{1}{2} \pm \frac{\sqrt{3}}{2} i$, therefore the general solutions are:

$$
y_{c}=C_{1} \mathrm{e}^{-\frac{1}{2} x} \cos \frac{\sqrt{3}}{2} x+C_{2} \mathrm{e}^{-\frac{1}{2} x} \sin \frac{\sqrt{3}}{2} x
$$

Next we solve for a particular solution y_{p}, we can use trial solution $y_{p}=A x^{2}+B x+C$, since

$$
\begin{aligned}
y_{p}^{\prime \prime}+y_{p}^{\prime}+y_{p} & =2 A+2 A x+B+A x^{2}+B x+C \\
& =A x^{2}+(2 A+B) x+(2 A+B+C)
\end{aligned}
$$

compare it with coefficients of $x^{2}+x+1$, we need $A=1,2 A+B=1$, $2 A+B+C=1$. Therefore $A=1, B=-1, C=0$, and the particular solution is $y_{p}=x^{2}-x$.
The general solution to the given equation is

$$
\begin{aligned}
y & =y_{c}+y_{p} \\
& =C_{1} \mathrm{e}^{-\frac{1}{2} x} \cos \frac{\sqrt{3}}{2} x+C_{2} \mathrm{e}^{-\frac{1}{2} x} \sin \frac{\sqrt{3}}{2} x+x^{2}-x
\end{aligned}
$$

