Hopf Subalgebras with
Algebraic Quotient Modules

Alberto Hernandez
Coauthors:
Lars Kadison,
Christopher Young
Univ. Porto

Kongsberg
July 10, 2013
Consider a Hopf subalgebra pair $R \subseteq H$, where H is a finite-dimensional Hopf algebra over an arbitrary field.

"Quotient" $V = H/R^+H$ where $R^+ = \ker \varepsilon_R$, a right H-module coalgebra via

$$\Delta_V(h) = h(1) \otimes h(2).$$

Finite tensor category $U, W \in \mathcal{M}_H$:

$$(u \otimes w) \cdot h = u \cdot h(1) \otimes w \cdot h(2)$$

Notation: $H \otimes^R n := H \otimes_R \cdots \otimes_R H$ (n times H)

Basic Lemma. $H \otimes^R n \cong H \otimes V \otimes^{(n-1)}$ via

$$x \otimes y \otimes \cdots \otimes z \mapsto xy(1) \cdots z(1) \otimes y(2) \cdots z(2) \otimes \cdots \otimes z(n),$$

with inverse mapping given by

$$u \otimes v \otimes w \otimes \cdots \mapsto uS(v(1)) \otimes_R v(2)S(w(1)) \otimes_R w(2) \cdots.$$
Similarity of two modules, $X \sim Y$ if $X \oplus \ast \cong Y \oplus \cdots \oplus Y$, briefly $X \mid n \cdot Y$ and $Y \mid m \cdot X$ for some $m, n \in \mathbb{N}$.

If $X, Y \in$ Krull-Schmidt category, and indecomposable isoclass summands of X denoted by $\text{Indec}(X)$, then

$X \mid n \cdot Y \Leftrightarrow \text{Indec}(X) \subseteq \text{Indec}(Y)$ and $X \sim Y \Leftrightarrow \text{Indec}(X) = \text{Indec}(Y)$

A subalgebra $R \subseteq H$ has finite depth $(2n + 1)$ if for some $n \in \mathbb{N}$, $H \otimes_R^n \sim H \otimes_R^{(n+1)}$ as X,Y-bimodules for any $X,Y \in \{R,H\}$ ($X = Y = R$).

Lemma. If any of R^e, H^e, $R \otimes H^{\text{op}}$ or $H \otimes R^{\text{op}}$ has finite representation type, then $R \subseteq H$ has finite depth.

Proof follows from $H \otimes_R^m \mid H \otimes_R^{(m+1)}$.
Def. A module algebra or coalgebra W in \mathcal{M}_H has *finite depth* (depth n) if $W \otimes n \sim W \otimes (n+1)$ in \mathcal{M}_H for some $n \in \mathbb{N}$.

Let $A(H)$ be the Green ring (under \oplus and \otimes w.r.t. isoclasses, basis of indecomposables).

Theorem. A Hopf subalgebra $R \subseteq H$ has finite depth iff its quotient V is algebraic in $A(H)$ or in $A(R)$.

PF. W. Feit’s text: an H-module is algebraic if it satisfies a polynomial equation in $A(H)$. This is equivalent to finite depth module and carries over to Hopf algebras from group alg’s. (\Leftarrow) If $V \otimes m \sim V \otimes (m+1)$ in \mathcal{M}_R, then $H \otimes_R (m+1) \cong H \cdot H \otimes V \cdot m \sim H \cdot H \otimes V \cdot (m+1) \cong H \otimes_R (m+2)$ as H-R-bimodules.

(\Rightarrow) Permute the argument above and apply $k \otimes_H -$.

Corollary. Depth is finite in case V is in finite rank ideal of either Green ring.
Example: $R_d = \text{Taft algebra} \subseteq H_d = \overline{U}_q(sl_2(\mathbb{C}))$ (small quantum group) where $q = \text{prim. } n'^{th}$ root of unity. ($d = n$ if n odd, $d = \frac{n}{2}$ if n even.) H_d gen. by K, E, F with relations $K^d = 1$, $E^d = 0 = F^d$, $EF - FE = \frac{K-K^{-1}}{q-q^{-1}}$, $KE = q^2EK$, and $KF = q^{-2}FK$.

coalgebra: $\Delta(K) = K \otimes K$, $\Delta(E) = E \otimes 1 + K \otimes E$ and $\Delta(F) = F \otimes K^{-1} + 1 \otimes F$. $\varepsilon(K) = 1$, $\varepsilon(E) = 0 = \varepsilon(F)$.

Theorem (Li-Liu, 2006). A basic Hopf \mathbb{C}-algebra has finite rep. type if and only if it is a Nakayama algebra: each projective indecomposable has unique composition series \iff each vertex of quiver has at most 1 incoming and 1 outgoing arrow.
The ordinary quiver of H_d: the orthog. prim. idempotent $e_{i+1} = \sum_{j=0}^{d-1} (q^{2i} K)^j / d$ where

\[e_{i+1} E = E e_{i+2} \in e_{i+1} (J/J^2) e_{i+2}, \]

\[F e_{i+1} = e_{i+2} F \in e_{i+2} (J/J^2) e_{i+1}. \] Not Nakayama!

For $d = 4$:

\[
\bullet^1 \iff \bullet^2 \\
\uparrow \downarrow \quad \uparrow \downarrow \\
\bullet^4 \iff \bullet^3
\]

Hopf subalgebra $= \text{Taft algebra } R_d$ gen. by just K, F with relations $K^d = 1, F^d = 0, KF = q^{-2}FK$. Same set of orth. prim. idemp. so quiver has 1 outgoing, 1 incoming arrow at each vertex: R_d Nakayama! E.g., at $d = 4$:

\[
\bullet^1 \leftrightarrow \bullet^2 \\
\downarrow \quad \uparrow \\
\bullet^4 \rightarrow \bullet^3
\]

Since R_d has fin. rep. type, the Hopf subalgebra $R_d \subset H_d$ has finite depth.
$V = H_d/R_d^+H_d$ spanned by $\{\overline{1}, \overline{E}, \ldots, \overline{E}^{d-1}\}$. Semisimple for $d = 2$, not semisimple when $d \geq 3$ since $VJ \neq 0$ from $\overline{E^2} \cdot F = -(q + q^{-1})\overline{E}$.

Theorem. A Hopf subalgebra $R \subseteq H$ with semisimple quotient V_R has finite depth if R has the Chevalley property.

PF. Chevalley property: tensor product of semisimple modules remains semisimple. Then $V \otimes^n$ remains a direct sum of finitely many simples for all $n \geq 0$. Apply previous theorem.

Example. The duals of pointed Hopf algebras, such as the basic algebras R_d and H_d above, have this property.
Proposition. A Hopf subalgebra $R \subseteq H$ with projective V_R has finite depth. However, V_R projective \iff R semisimple!

PF. $0 \rightarrow R^+ \rightarrow R \xrightarrow{\xi} k \rightarrow 0$ by definition. Apply free (and faithfully flat) functor of induction from R up to H:

$$0 \rightarrow R^+ H \rightarrow H \rightarrow V \rightarrow 0$$

Finally the projectives of $A(R)$ form a finite rank ideal.

Group Example. Let $H = k[G]$ and $R = k[K]$ where $K \subseteq G$ is a finite group-subgroup pair. Then $V = \mathbb{C}[G/K]$ the permutation module of right cosets (via $\bar{g} \mapsto Kg$).

Feit, Chapter 9: Permutation modules are algebraic modules. Consequently, $H \supseteq R$ has finite depth.
Group Example Continued. \(k = \mathbb{C} \). The character of \(V \) is the induced character \(1^G_K \), which is \textit{faithful} if \(K \) is a \textit{corefree} subgroup in \(G \).

Brauer-Burnside Theorem. The powers of a faithful character \(\chi \) contain each irreducible character of \(G \)....
\[\Rightarrow \text{minimum depth of } V \text{ less than no. of distinct values assumed by } 1^G_K \text{ on } G. \]

\(k \) a general field again. \(R^+ \supset \text{Ann}_R V \supset \cdots \supset \text{Ann}_R V \otimes \ell_V = \text{Ann}_R V \otimes (\ell_V + 1) = \cdots = \text{maximal Hopf ideal in } \text{Ann}_R V \).

Theorem. If \(R \) is semisimple with \(n \) irreducible characters, and \(V \) has annihilator ideal that contains no nonzero Hopf ideal (or bi-ideal), then minimum depth of \(R \subseteq H \) is less than \(2\ell_V + 2 \), where \(\ell_V \leq n \) is the least tensor power of \(V \) that is faithful \(R \)-module.
\[V = H/R^+H \] a right \(H \)-module coalgebra ⇔ \(V^* \) a left \(H \)-module algebra.

Theorem. If \(A \) is a left \(H \)-module algebra, then

\[
(A \# H)^{\otimes H^n} \cong .A^{\otimes n} \otimes .H
\]

as \(H-H \)-bimodules.

Corollary 1. \(H \) has finite depth in \(V^* \# H \) ⇔ \(V^* \) has finite depth ⇔ \(V \) has finite depth ⇔ Hopf subalgebra \(R \) has finite depth in \(H \).

Corollary 2. Let \(G \) be finite centerless group. Then depth \(d(\mathbb{C} G, D(G)) = 2\ell_V + 1 \), where \(V \) is the adjoint representation of \(G \) on itself.

Corollary 3. Let \(\dim H \geq 2 \). Then the minimum odd depth of \(H^* \) in its Heisenberg double satisfies \(d_{odd}(H^*, H \# H^*) = 3 \).
Spinoff and Further Thoughts

Theorem. R is ad-stable in H if and only if right integral $t \in R$ is normal element in H.

PF. (\Leftarrow) Normal element $t \in R \subseteq H$ if $tH = Ht$.

But $V \overset{\sim}{\rightarrow} tH$ via $h + R^+ H \mapsto th$. Then $V_R \cong Ht$ has depth 0, so depth of R in H is 2. This is equivalent to R being ad-stable in H by Boltje-Külshammer characterization.

- Algebra V^* is Frobenius.

- Some generalization to K a left coideal subalgebra of H : subalgebra depth is finite iff V_H is algebraic module.
• The dual monic $V^* \hookrightarrow H^*$ is left (R^*-) Hopf-Galois extension, with normal basis property: $H^* \cong V^* \#_\sigma R^*$.

• Are generalized permutation modules $V \cong k \otimes_R H$ algebraic? Not clear without Mackey theorems.
Thanks for tuning in!

References

Algebraic modules:
D. Craven, Simple modules for groups with abelian Sylow 2-subgroups are algebraic, *J. Algebra* 321 (2009), 1473–1479.
Earlier articles by Alperin, Berger.