A **bijection** is a one-to-one and onto mapping.
A **bijection** is a one-to-one and onto mapping.

Example

A mapping from set A to set B is shown in the diagram.
Introduction

Definition

A **bijection** is a one-to-one and onto mapping.

Definition

An **involution** is a bijection from a set to itself which is its own inverse.

Example

![Diagram showing an involution between sets A and B]
Definition

A **bijection** is a one-to-one and onto mapping.

Definition

An **involution** is a bijection from a set to itself which is its own inverse.

Example

![Diagram of bijection and involution](image)
Introduction

- The philosophy of combinatorial proof
Introduction

- The philosophy of combinatorial proof
- Bijective proof

Example

\[\sum_{k=0}^{n} \binom{n}{k} = 2^n \]

is the number of unordered subsets of size \(k \) from a set of size \(n \).
Introduction

- The philosophy of combinatorial proof
- Bijective proof

Example

\[\sum_{k=0}^{n} \binom{n}{k} = 2^n \]

\[\binom{n}{k} = \frac{n!}{k!(n-k)!} \]

is the number of unordered subsets of size \(k \) from a set of size \(n \)
Introduction

- The philosophy of combinatorial proof
- Bijective proof
- Involutive proof

Example

\[\sum_{k=0}^{n} \binom{n}{k} = 2^n \]

\(\binom{n}{k} = \frac{n!}{k!(n-k)!} \) is the number of unordered subsets of size \(k \) from a set of size \(n \).
Introduction

- The philosophy of combinatorial proof
- Bijective proof
- Involutive proof

Example

\[\sum_{k=0}^{n} \binom{n}{k} = 2^n \]

\(\binom{n}{k} = \frac{n!}{k!(n-k)!} \) is the number of unordered subsets of size \(k \) from a set of size \(n \)

Example

Are there an even or odd number of people in the room right now?
Definition

A partition of a positive integer n is an expression of n as the sum of a sequence of weakly decreasing positive integers, called the parts of the partition.
Partitions

Definition

A partition of a positive integer \(n \) is an expression of \(n \) as the sum of a sequence of weakly decreasing positive integers, called the parts of the partition.

Example

There are 5 partitions of 4, as

\[
4 = 3 + 1 = 2 + 2 = 2 + 1 + 1 = 1 + 1 + 1 + 1.
\]
Partitions

Definition

A partition of a positive integer \(n \) is an expression of \(n \) as the sum of a sequence of weakly decreasing positive integers, called the parts of the partition.

Example

There are 5 partitions of 4, as
\[
4 = 3 + 1 = 2 + 2 = 2 + 1 + 1 = 1 + 1 + 1 + 1.
\]

A partition \(\lambda \) of \(n \) with parts \(\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_s \) is either written as such or in the form \(\lambda_{n_1}^{m_1} \lambda_{n_2}^{m_2} \ldots \lambda_{n_k}^{m_k} \), where each \(\lambda_{n_i} \) is a distinct part in \(\lambda \) with \(\lambda_{n_1} > \lambda_{n_2} > \ldots > \lambda_{n_k} \), and there are \(m_i \) copies of \(\lambda_{n_i} \).
Definition

A **partition** of a positive integer n is an expression of n as the sum of a sequence of weakly decreasing positive integers, called the **parts** of the partition.

Example

There are 5 partitions of 4, as

$$4 = 3 + 1 = 2 + 2 = 2 + 1 + 1 = 1 + 1 + 1 + 1.$$

A partition λ of n with parts $\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_s$ is either written as such or in the form $\lambda_{n_1}^{m_1} \lambda_{n_2}^{m_2} \ldots \lambda_{n_k}^{m_k}$, where each λ_{n_i} is a distinct part in λ with $\lambda_{n_1} > \lambda_{n_2} > \ldots > \lambda_{n_k}$, and there are m_i copies of λ_{n_i}. Thus the partition $6 + 4 + 4 + 3$ of 17 could be written as $6 \geq 4 \geq 4 \geq 3$ or $6^14^23^1$.
Definition

The Ferrers diagram of a partition $\lambda = \lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_s$ is a diagram of left-justified boxes with λ_i boxes in the ith row from the top.
Ferrers diagram

Definition

The **Ferrers diagram** of a partition $\lambda = \lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_s$ is a diagram of left-justified boxes with λ_i boxes in the ith row from the top.

Example

```
7
5
3
```
Ferrers diagram

Definition

The **conjugate** of a partition \(\lambda = \lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_s \) is the partition whose Ferrers diagram has \(\lambda_i \) boxes in the \(i \)th column from the left.
Definition

The **conjugate** of a partition $\lambda = \lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_s$ is the partition whose Ferrers diagram has λ_i boxes in the ith column from the left.

Example

\[
\begin{array}{c|cccc}
 & 4 & 3 & 2 & 1 \\
\hline
 1 & & & & \\
 2 & & & & \\
 3 & & & & \\
 4 & & & &
\end{array}
\quad
\begin{array}{c|ccc}
 & 3 & 2 & 1 \\
\hline
 1 & & & \\
 2 & & & \\
 3 & & &
\end{array}
\]
Euler’s Theorem

Let $O(n)$ denote the set of partitions of n into odd parts, and let $D(n)$ denote the set of partitions of n into distinct parts. Then for all n, $|O(n)| = |D(n)|$.

Example: $D(6): \{6, 5+1, 4+2, 3+2+1\}$; $O(6): \{5+1, 3+3, 3+1+1+1, 1+1+1+1+1+1\}$.
Euler’s Theorem

Let $O(n)$ denote the set of partitions of n into odd parts, and let $D(n)$ denote the set of partitions of n into distinct parts. Then for all n, $|O(n)| = |D(n)|$.

Example

$D(6) : \{6, 5 + 1, 4 + 2, 3 + 2 + 1\}$
$O(6) : \{5 + 1, 3 + 3, 3 + 1 + 1 + 1, 1 + 1 + 1 + 1 + 1 + 1 + 1\}$
We give a bijection \(\phi : D(n) \rightarrow O(n) \) devised by Glaisher (1883).
Proof of Euler’s Theorem

We give a bijection $\phi : D(n) \rightarrow O(n)$ devised by Glaisher (1883). For $\lambda = \lambda_1 > \lambda_2 > \ldots > \lambda_s \in D(n)$, let $\lambda_i = 2^{p_i}\mu_i$, where μ_i is odd.
Proof of Euler’s Theorem

We give a bijection \(\phi : D(n) \to O(n) \) devised by Glaisher (1883). For \(\lambda = \lambda_1 > \lambda_2 > \ldots > \lambda_s \in D(n) \), let \(\lambda_i = 2^{p_i} \mu_i \), where \(\mu_i \) is odd. Let \(\phi(\lambda) = \mu \), where \(\mu \) has \(2^{p_i} \) parts of \(\mu_i \), so that \(\mu \in O(n) \). Write \(\mu \) as \(\mu_{n_1}^{m_1} \mu_{n_2}^{m_2} \ldots \mu_{n_k}^{m_k} \).
We give a bijection \(\phi : D(n) \rightarrow O(n) \) devised by Glaisher (1883).

For \(\lambda = \lambda_1 > \lambda_2 > \ldots > \lambda_s \in D(n) \), let \(\lambda_i = 2^{p_i} \mu_i \), where \(\mu_i \) is odd. Let \(\phi(\lambda) = \mu \), where \(\mu \) has \(2^{p_i} \) parts of \(\mu_i \), so that \(\mu \in O(n) \).

Write \(\mu \) as \(\mu^{m_1}_{n_1} \mu^{m_2}_{n_2} \ldots \mu^{m_k}_{n_k} \). Each \(m_i = 2^{i_1} + 2^{i_2} + \ldots + 2^{i_q} \) for exactly one sequence of nonnegative integers \(i_1 > i_2 > \ldots > i_q \).
Proof of Euler’s Theorem

We give a bijection $\phi : D(n) \rightarrow O(n)$ devised by Glaisher (1883). For $\lambda = \lambda_1 > \lambda_2 > \ldots > \lambda_s \in D(n)$, let $\lambda_i = 2^{p_i} \mu_i$, where μ_i is odd. Let $\phi(\lambda) = \mu$, where μ has 2^{p_i} parts of μ_i, so that $\mu \in O(n)$. Write μ as $\mu_{n_1}^{m_1} \mu_{n_2}^{m_2} \ldots \mu_{n_k}^{m_k}$. Each $m_i = 2^{i_1} + 2^{i_2} + \ldots + 2^{i_q}$ for exactly one sequence of nonnegative integers $i_1 > i_2 > \ldots > i_q$. Thus μ could only be the image under ϕ of some λ with parts of the form $2^{i_t} \mu_i$, so ϕ is one-to-one.
Proof of Euler’s Theorem

We give a bijection \(\phi : D(n) \rightarrow O(n) \) devised by Glaisher (1883). For \(\lambda = \lambda_1 > \lambda_2 > \ldots > \lambda_s \in D(n) \), let \(\lambda_i = 2^{p_i} \mu_i \), where \(\mu_i \) is odd. Let \(\phi(\lambda) = \mu \), where \(\mu \) has \(2^{p_i} \) parts of \(\mu_i \), so that \(\mu \in O(n) \). Write \(\mu \) as \(\mu_{m_1}^{n_1} \mu_{m_2}^{n_2} \ldots \mu_{m_k}^{n_k} \). Each \(m_i = 2^{i_1} + 2^{i_2} + \ldots + 2^{i_q} \) for exactly one sequence of nonnegative integers \(i_1 > i_2 > \ldots > i_q \). Thus \(\mu \) could only be the image under \(\phi \) of some \(\lambda \) with parts of the form \(2^{i_t} \mu_i \), so \(\phi \) is one-to-one. Since such a \(\lambda \) must have distinct parts, we have a well-defined inverse mapping \(\phi^{-1} : O(n) \rightarrow D(n) \), so \(\phi \) is onto.
Fine’s Theorem

Let $Q(n)$ be the set of partitions of n into distinct parts where the smallest part is odd. Then $|Q(n)|$ is odd if and only if n is a perfect square.

Example:

$Q(6): \{5 + 1, 3 + 2 + 1\}$

$Q(7): \{7, 6 + 1, 4 + 3, 4 + 2 + 1\}$

$Q(9): \{9, 8 + 1, 6 + 3, 6 + 2 + 1, 5 + 3 + 1\}$

$Q(10): \{9 + 1, 7 + 3, 7 + 2 + 1, 6 + 3 + 1, 5 + 4 + 1, 4 + 3 + 2 + 1\}$
Fine’s Theorem

Theorem

Let $Q(n)$ be the set of partitions of n into distinct parts where the smallest part is odd. Then $|Q(n)|$ is odd if and only if n is a perfect square.
Fine’s Theorem

Theorem

Let $Q(n)$ be the set of partitions of n into distinct parts where the smallest part is odd. Then $|Q(n)|$ is odd if and only if n is a perfect square.

Example

- $Q(6)$: $\{5 + 1, 3 + 2 + 1\}$
- $Q(7)$: $\{7, 6 + 1, 4 + 3, 4 + 2 + 1\}$
- $Q(9)$: $\{9, 8 + 1, 6 + 3, 6 + 2 + 1, 5 + 3 + 1\}$
- $Q(10)$: $\{9+1, 7+3, 7 + 2 + 1, 6 + 3 + 1, 5 + 4 + 1, 4 + 3 + 2 + 1\}$
Theorem

Let $Q(n)$ be the set of partitions of n into distinct parts where the smallest part is odd. Then $|Q(n)|$ is odd if and only if n is a perfect square.
Let $Q(n)$ be the set of partitions of n into distinct parts where the smallest part is odd. Then $|Q(n)|$ is odd if and only if n is a perfect square.

Idea of the proof: Define an involution $\kappa : Q(n) \rightarrow Q(n)$ which has exactly one fixed point if and only if n is a perfect square (and has no fixed points if and only if n is not a perfect square).
Proof of Fine’s Theorem

Let $\lambda \in Q(n)$, with odd parts $s_k > s_{k-1} > \ldots > s_1$ and smallest even part e_1.
Proof of Fine’s Theorem

Let $\lambda \in Q(n)$, with odd parts $s_k > s_{k-1} > \ldots > s_1$ and smallest even part e_1. If there are no even parts, define $e_1 = \infty$.
Proof of Fine’s Theorem

Let $\lambda \in Q(n)$, with odd parts $s_k > s_{k-1} > \ldots > s_1$ and smallest even part e_1. If there are no even parts, define $e_1 = \infty$. Define $t_i = s_i - (2i - 1)$, for $i \leq k$, and let $t_{k+1} = \infty$.
Proof of Fine’s Theorem

Let $\lambda \in Q(n)$, with odd parts $s_k > s_{k-1} > \ldots > s_1$ and smallest even part e_1. If there are no even parts, define $e_1 = \infty$. Define $t_i = s_i - (2i - 1)$, for $i \leq k$, and let $t_{k+1} = \infty$. Let α be the smallest i such that $t_i > 0$.

Proof of Fine’s Theorem

Let $\lambda \in Q(n)$, with odd parts $s_k > s_{k-1} > \ldots > s_1$ and smallest even part e_1. If there are no even parts, define $e_1 = \infty$. Define $t_i = s_i - (2i - 1)$, for $i \leq k$, and let $t_{k+1} = \infty$. Let α be the smallest i such that $t_i > 0$.

Now, we construct $\kappa(\lambda)$ by performing one of the following three actions, depending on the case.
Proof of Fine’s Theorem

Let $\lambda \in Q(n)$, with odd parts $s_k > s_{k-1} > \ldots > s_1$ and smallest even part e_1. If there are no even parts, define $e_1 = \infty$. Define $t_i = s_i - (2i - 1)$, for $i \leq k$, and let $t_{k+1} = \infty$. Let α be the smallest i such that $t_i > 0$.

Now, we construct $\kappa(\lambda)$ by performing one of the following three actions, depending on the case.

1. If $t_\alpha < e_1$, then split s_α into $2\alpha - 1$ and t_α.
Proof of Fine’s Theorem

Let $\lambda \in Q(n)$, with odd parts $s_k > s_{k-1} > \ldots > s_1$ and smallest even part e_1. If there are no even parts, define $e_1 = \infty$. Define $t_i = s_i - (2i - 1)$, for $i \leq k$, and let $t_{k+1} = \infty$. Let α be the smallest i such that $t_i > 0$.

Now, we construct $\kappa(\lambda)$ by performing one of the following three actions, depending on the case.

1. If $t_\alpha < e_1$, then split s_α into $2\alpha - 1$ and t_α.
2. If $t_\alpha \geq e_1$, and $e_1 < \infty$, then combine $s_{\alpha-1}$ with e_1.
Proof of Fine’s Theorem

Let $\lambda \in Q(n)$, with odd parts $s_k > s_{k-1} > \ldots > s_1$ and smallest even part e_1. If there are no even parts, define $e_1 = \infty$. Define $t_i = s_i - (2i - 1)$, for $i \leq k$, and let $t_{k+1} = \infty$. Let α be the smallest i such that $t_i > 0$.

Now, we construct $\kappa(\lambda)$ by performing one of the following three actions, depending on the case.

1. If $t_\alpha < e_1$, then split s_α into $2\alpha - 1$ and t_α.
2. If $t_\alpha \geq e_1$, and $e_1 < \infty$, then combine $s_{\alpha-1}$ with e_1.
3. If $t_\alpha = e_1 = \infty$, then do nothing.
Proof of Fine’s Theorem
Kolberg’s Theorem

The partition function $p(n)$ takes infinitely many even and odd values.
Proof of Kolberg’s Theorem

Let $SC(n)$ denote the set of self-conjugate partitions of n.

Thus $p(n)$ has the same parity as $|DO(n)|$.

Let $DO(n) = D(n) \cap O(n)$ be the set of partitions of n into distinct odd parts.

Then $|SC(n)| = |DO(n)|$.

Thus $p(n)$ has the same parity as $|DO(n)|$.

Proof of Kolberg’s Theorem

Let $SC(n)$ denote the set of self-conjugate partitions of n. Then $p(n)$ has the same parity as $|SC(n)|$.

\[
\begin{array}{cccc}
5 & & & \\
3 & & & \\
2 & & & \\
1 & & & \\
1 & & & \\
\end{array}
\]
Proof of Kolberg’s Theorem

Let $SC(n)$ denote the set of self-conjugate partitions of n. Then $p(n)$ has the same parity as $|SC(n)|$.

Let $DO(n) = D(n) \cap O(n)$ be the set of partitions of n into distinct odd parts.
Proof of Kolberg’s Theorem

Let $SC(n)$ denote the set of self-conjugate partitions of n. Then $p(n)$ has the same parity as $|SC(n)|$.

Let $DO(n) = D(n) \cap O(n)$ be the set of partitions of n into distinct odd parts. Then $|SC(n)| = |DO(n)|$.

\[
\begin{array}{ccccccccc}
5 & & & & & & & & \\
3 & & & & & & & & \\
2 & & & & & & & & \\
1 & & & & & & & & \\
1 & & & & & & & & \\
\end{array}
\]

\[
\begin{array}{cccccccc}
5 & & & & & & & & \\
3 & & & & & & & & \\
2 & & & & & & & & \\
1 & & & & & & & & \\
1 & & & & & & & & \\
3 & & & & & & & & \\
9 & & & & & & & & \\
\end{array}
\]
Proof of Kolberg’s Theorem

Let $SC(n)$ denote the set of self-conjugate partitions of n. Then $p(n)$ has the same parity as $|SC(n)|$.

Let $DO(n) = D(n) \cap O(n)$ be the set of partitions of n into distinct odd parts. Then $|SC(n)| = |DO(n)|$.

Thus $p(n)$ has the same parity as $|DO(n)|$.
Proof of Kolberg’s Theorem

For any $\lambda \in DO(n)$ denote the parts of λ by $\lambda_1 > \lambda_2 > \ldots > \lambda_s$.

Thus $|DO(n)|$ differs in parity from $|DO(n+1)|$ precisely when $|DO_1(n+1)|$ is odd.

Thus to prove the theorem we can show that $|DO_1(n)|$ is odd for infinitely many n.
Proof of Kolberg’s Theorem

For any $\lambda \in DO(n)$ denote the parts of λ by $\lambda_1 > \lambda_2 > \ldots > \lambda_s$. Let $DO_1(n) = \{\lambda \in DO(n)|\lambda_1 - \lambda_2 = 2, \lambda_s > 1\}$.

Thus $|DO(n)|$ differs in parity from $|DO(n+1)|$ precisely when $|DO_1(n+1)|$ is odd. Thus to prove the theorem we can show that $|DO_1(n)|$ is odd for infinitely many n.
Proof of Kolberg’s Theorem

For any $\lambda \in DO(n)$ denote the parts of λ by $\lambda_1 > \lambda_2 > \ldots > \lambda_s$. Let $DO_1(n) = \{ \lambda \in DO(n) | \lambda_1 - \lambda_2 = 2, \lambda_s > 1 \}$.

Then $|DO(n)| = |DO(n + 1) \setminus DO_1(n + 1)|$.

Thus $|DO(n)|$ differs in parity from $|DO(n + 1)|$ precisely when $|DO_1(n + 1)|$ is odd. Thus to prove the theorem we can show that $|DO_1(n)|$ is odd for infinitely many n.
Proof of Kolberg’s Theorem

For any $\lambda \in DO(n)$ denote the parts of λ by $\lambda_1 > \lambda_2 > \ldots > \lambda_s$. Let $DO_1(n) = \{\lambda \in DO(n) | \lambda_1 - \lambda_2 = 2, \lambda_s > 1\}$.

Then $|DO(n)| = |DO(n + 1) \setminus DO_1(n + 1)|$.

Thus $|DO(n)|$ differs in parity from $|DO(n + 1)|$ precisely when $|DO_1(n + 1)|$ is odd.
Proof of Kolberg’s Theorem

For any $\lambda \in DO(n)$ denote the parts of λ by $\lambda_1 > \lambda_2 > \ldots > \lambda_s$.
Let $DO_1(n) = \{ \lambda \in DO(n) | \lambda_1 - \lambda_2 = 2, \lambda_s > 1 \}$.

Then $|DO(n)| = |DO(n + 1) \setminus DO_1(n + 1)|$.

Thus $|DO(n)|$ differs in parity from $|DO(n + 1)|$ precisely when $|DO_1(n + 1)|$ is odd.
Thus to prove the theorem we can show that $|DO_1(n)|$ is odd for infinitely many n.
Proof of Kolberg’s Theorem

Let $DO_j(n) = \{ \lambda \in DO(n) | \lambda_1 - \lambda_2 = \lambda_2 - \lambda_3 = \ldots = \lambda_j - \lambda_{j+1} = 2, \lambda_s > 1 \}$.

\begin{align*}
11 & 9 & 7 & 3 \\
10 & 8 & 6 & 2 \\
9 & 7 & 5 & 1 \\
8 & 6 & 4 & \\
7 & 5 & 3 & \\
6 & 4 & 2 & \\
5 & 3 & 1 & \\
4 & 2 & & \\
3 & 1 & & \\
2 & & & \\
1 & & & \\
\end{align*}
Proof of Kolberg’s Theorem

Let $DO_j(n) = \{ \lambda \in DO(n) \mid \lambda_1 - \lambda_2 = \lambda_2 - \lambda_3 = \ldots = \lambda_j - \lambda_{j+1} = 2, \lambda_s > 1 \}$.

Then for all positive integers j,
$|DO_j(n)| = |DO_j(n + 2j + 2) \setminus DO_{j+1}(n + 2j + 2)|$.

$\phi : DO_2(24) \rightarrow DO_2(30) \setminus DO_3(30)$
Proof of Kolberg’s Theorem

Let $DO_j(n) =$
$\{ \lambda \in DO(n) | \lambda_1 - \lambda_2 = \lambda_2 - \lambda_3 = \ldots = \lambda_j - \lambda_{j+1} = 2, \lambda_s > 1 \}$.

Then for all positive integers j,
$|DO_j(n)| = |DO_j(n + 2j + 2) \setminus DO_{j+1}(n + 2j + 2)|$.

Thus $|DO_j(n)|$ differs in parity from $|DO_j(n + 2j + 2)|$ precisely when $|DO_{j+1}(n + 2j + 2)|$ is odd.
Given $k \geq 1$, we construct $n > k$ such that $|DO_1(n)|$ is odd.
Given \(k \geq 1 \), we construct \(n > k \) such that \(|DO_1(n)|\) is odd. Note that
\[
DO_{k-2}(k^2 - 1) = \{(2k - 1) + (2k - 3) + \ldots + 3\}
\]
and therefore
\[
|DO_{k-2}(k^2 - 1)| = 1.
\]
Proof of Kolberg’s Theorem

Given $k \geq 1$, we construct $n > k$ such that $|DO_1(n)|$ is odd. Note that $DO_{k-2}(k^2 - 1) = \{(2k - 1) + (2k - 3) + \ldots + 3\}$ and therefore $|DO_{k-2}(k^2 - 1)| = 1$. Thus $|DO_{k-3}(k^2 - 1)|$ and $|DO_{k-3}(k^2 - 1 - 2(k - 2))|$ differ in parity, so we can pick $n_{k-3} \in \{k^2 - 1, k^2 - 1 - 2(k - 2)\}$ such that $|DO_{k-3}(n_{k-3})|$ is odd.
Proof of Kolberg’s Theorem

Given \(k \geq 1 \), we construct \(n > k \) such that \(|DO_1(n)| \) is odd. Note that \(DO_{k-2}(k^2 - 1) = \{(2k - 1) + (2k - 3) + \ldots + 3\} \) and therefore \(|DO_{k-2}(k^2 - 1)| = 1 \). Thus \(|DO_{k-3}(k^2 - 1)| \) and \(|DO_{k-3}(k^2 - 1 - 2(k - 2))| \) differ in parity, so we can pick \(n_{k-3} \in \{k^2 - 1, k^2 - 1 - 2(k - 2)\} \) such that \(|DO_{k-3}(n_{k-3})| \) is odd. Then \(|DO_{k-4}(n_{k-3})| \) and \(|DO_{k-4}(n_{k-3} - 2(k - 3))| \) differ in parity, so we can pick \(n_{k-4} \in \{n_{k-3}, n_{k-3} - 2(k - 3)\} \) such that \(|DO_{k-4}(n_{k-4})| \) is odd.
Proof of Kolberg’s Theorem

Given $k \geq 1$, we construct $n > k$ such that $|DO_1(n)|$ is odd. Note that $DO_{k-2}(k^2 - 1) = \{(2k - 1) + (2k - 3) + \ldots + 3\}$ and therefore $|DO_{k-2}(k^2 - 1)| = 1$. Thus $|DO_{k-3}(k^2 - 1)|$ and $|DO_{k-3}(k^2 - 1 - 2(k - 2))|$ differ in parity, so we can pick $n_{k-3} \in \{k^2 - 1, k^2 - 1 - 2(k - 2)\}$ such that $|DO_{k-3}(n_{k-3})|$ is odd. Then $|DO_{k-4}(n_{k-3})|$ and $|DO_{k-4}(n_{k-3} - 2(k - 3))|$ differ in parity, so we can pick $n_{k-4} \in \{n_{k-3}, n_{k-3} - 2(k - 3)\}$ such that $|DO_{k-4}(n_{k-4})|$ is odd. We iterate this process to find n_1. Then $|DO_1(n_1)|$ is odd, and

$$n_1 \geq k^2 - 1 - (2(k - 2) + 2(k - 3) + \ldots + 4) = k^2 - 1 - 2(2 + 3 + \ldots + k - 2) = k^2 - 1 - k(k - 3) = 3k - 1 > k.$$
Special thanks to our advisor Mark Krusemeyer.

Sources and Suggested Reading:

