A New Fibonacci Identity

David Lonoff (with Jonah Ostroff)

Carleton College

February 24, 2009
Definition

A **tiling** of a board of length n and height 1 consists of a non-overlapping placement of squares (1×1) and dominoes (2×1) which completely cover the board.
Tiling a Board

Definition

A tiling of a board of length n and height 1 consists of a non-overlapping placement of squares (1 × 1) and dominoes (2 × 1) which completely cover the board.

Example
Tiling a Board

Definition

A tiling of a board of length n and height 1 consists of a non-overlapping placement of squares (1×1) and dominoes (2×1) which completely cover the board.

Example

[Diagram showing a board with tiles and dominoes placed in a tiling pattern]
Definition

A tiling of a board of length n and height 1 consists of a non-overlapping placement of squares (1×1) and dominoes (2×1) which completely cover the board.

Example
Definition
A tiling of a board of length n and height 1 consists of a non-overlapping placement of squares (1×1) and dominoes (2×1) which completely cover the board.

Example
Counting Board Tilings

<table>
<thead>
<tr>
<th>n</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of tilings</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>8</td>
<td>13</td>
<td>21</td>
<td>34</td>
</tr>
</tbody>
</table>
There are F_n ways to tile a board of length n with squares and dominoes, where $F_0 = F_1 = 1$, and $F_n = F_{n-1} + F_{n-2}$.
Why Tilings are Cool

Proof.

How many ways are there to tile a board of length $2n$?

Answer 1: F_{2n}

Answer 2: $(F_n)^2 + (F_n - 1)^2$
Why Tilings are Cool

Theorem

\[F_{2n} = (F_n)^2 + (F_{n-1})^2, \text{ for all } n \geq 1. \]
Why Tilings are Cool

Theorem

\[F_{2n} = (F_n)^2 + (F_{n-1})^2, \text{ for all } n \geq 1. \]

Example

When \(n = 4 \), we have \(F_{2n} = F_8 = 34 \) and

\[(F_n)^2 + (F_{n-1})^2 = (F_4)^2 + (F_3)^2 = 5^2 + 3^2 = 34. \]
Why Tilings are Cool

Theorem

\[F_{2n} = (F_n)^2 + (F_{n-1})^2, \text{ for all } n \geq 1. \]

Proof.

How many ways are there to tile a board of length \(2n \)?

Answer 1: \(F_{2n} \)

Answer 2: \((F_n)^2 + (F_{n-1})^2 \)
Why Tilings are Cool

Theorem

\[F_{2n} = (F_n)^2 + (F_{n-1})^2, \text{ for all } n \geq 1. \]

Proof.

How many ways are there to tile a board of length \(2n \)?
Why Tilings are Cool

Theorem

\[F_{2n} = (F_n)^2 + (F_{n-1})^2, \text{ for all } n \geq 1. \]

Proof.

How many ways are there to tile a board of length 2\(n\)?

Answer 1: \(F_{2n}\)
Why Tilings are Cool

Theorem

\[F_{2n} = (F_n)^2 + (F_{n-1})^2, \text{ for all } n \geq 1. \]

Proof.

How many ways are there to tile a board of length \(2n\)?

Answer 1: \(F_{2n}\)

Answer 2:
Theorem

\[F_{2n} = (F_n)^2 + (F_{n-1})^2, \text{ for all } n \geq 1. \]

Proof.

How many ways are there to tile a board of length 2n?

Answer 1: \(F_{2n} \)

Answer 2: \((F_n)^2 + (F_{n-1})^2 \)
Theorem (Lonoff, Ostroff)

\[\sum_{k=1}^{n} F_{2k-4} 2^{n-k} = F_{2n-1}, \text{ for all } n \geq 1. \]
Theorem (Lonoff, Ostroff)

\[\sum_{k=1}^{n} F_{2k-4}2^{n-k} = F_{2n-1}, \text{ for all } n \geq 1. \]

How many ways are there to tile a board of length $2n - 1$?
A New Fibonacci Identity

Theorem (Lonoff, Ostroff)

\[\sum_{k=1}^{n} F_{2k-4}2^{n-k} = F_{2n-1}, \text{ for all } n \geq 1. \]

How many ways are there to tile a board of length 2\(n - 1\)?
Answer 1: \(F_{2n-1}\)
A New Fibonacci Identity

Theorem (Lonoff, Ostroff)

\[\sum_{k=1}^{n} F_{2k-4} 2^{n-k} = F_{2n-1}, \text{ for all } n \geq 1. \]

How many ways are there to tile a board of length $2n - 1$?

Answer 1: F_{2n-1}

Answer 2:
A New Fibonacci Identity

Theorem (Lonoff, Ostroff)

\[\sum_{k=1}^{n} F_{2k-4}2^{n-k} = F_{2n-1}, \text{ for all } n \geq 1. \]

How many ways are there to tile a board of length \(2n - 1\)?

Answer 1: \(F_{2n-1}\)

Answer 2:
A New Fibonacci Identity

Theorem (Lonoff, Ostroff)

\[\sum_{k=1}^{n} F_{2k-4}2^{n-k} = F_{2n-1}, \text{ for all } n \geq 1. \]

How many ways are there to tile a board of length \(2n - 1\)?

Answer 1: \(F_{2n-1} \)

Answer 2: \(\sum_{k=1}^{n} F_{2k-4}2^{n-k} \)
A New Fibonacci Identity

Theorem (Lonoff, Ostroff)

\[\sum_{k=1}^{n} F_{2k-4}2^{n-k} = F_{2n-1}, \text{ for all } n \geq 1. \]

This naturally generalizes to

\[F_{mn+r} = F_r F_m^n + \sum_{k=1}^{n} F_{mk-m+r-1} F_{m-1} F_{m}^{n-k} \]
Acknowledgements

This project was funded by Carleton’s HHMI grant. Thanks to our advisor Eric Egge and the Carleton Math Department.

Thanks for your attention!