# SOLUTIONS TO PROBLEM SET 3 

MATTI ÅSTRAND

## The General Cubic Extension

Denote $L=k\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right), F=k\left(a_{1}, a_{2}, a_{3}\right)$ and $K=F\left(\alpha_{1}\right)$. The polynomial

$$
f(x)=x^{3}-a_{1} x^{2}+a_{2} x-a_{3}=\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right)\left(x-\alpha_{3}\right)
$$

is irreducible in $F[x]$. The symmetric group $S_{3}$ acts on $L$ by permuting the $\alpha_{i}$, and fixes the field $F$.

Problem 2. The field $K=F\left(\alpha_{1}\right)$ is generated over $F$ by the element $\alpha_{1}$, which is a root of the irreducible polynomial $f(x) \in F[x]$, so $K \cong F[t] /(f(t))$ and has a basis $\left\{1, \alpha_{1}, \alpha_{1}^{2}\right\}$ over $F$. Thus $\operatorname{dim}_{F} K=3$.

Let's now consider $f(x)$ as a polynomial in $K[x]$. It has a linear factor corresponding to the root $\alpha_{1} \in K$, so it factors as

$$
f(x)=\left(x-\alpha_{1}\right) g(x),
$$

where $g(x)$ is a quadratic polynomial in $K[x]$. (Note: actually $g(x)=\left(x-\alpha_{2}\right)\left(x-\alpha_{3}\right)$, but this factoring takes place in $L[x]$.)

We get $L$ from $K$ by adding the roots of the quadratic polynomial $g(x)$. Thus the extension is either quadratic (if the roots of $g(x)$ are not in $K$ ) or trivial, i.e. $L=K$ (if $g(x)$ has roots already in $K$ ).

Turns out that $L$ is a quadratic extension of $K$ : for this we need to show that the two fields are not equal. Let $\sigma=(23)$ be the transposition swapping $\alpha_{2}$ and $\alpha_{3}$. Denote by $L^{\sigma}$ the fixed field of $\sigma$. Since $\sigma$ obviously doesn't fix every element of $L$ (e.g. it doesn't fix $\alpha_{2}$ ) we see that $L^{\sigma} \subsetneq L$. On the other hand, $\sigma$ does fix everything in $F$ and also $\alpha_{1}$, so it fixes everything in $K$. We then have

$$
K \subseteq L^{\sigma} \subsetneq L
$$

(Note that this also proves that $K$ is exactly the fixed field $L^{\sigma}$.)
Now we know that $\operatorname{dim}_{K} L=2$, and $L$ has a basis $\left\{1, \alpha_{2}\right\}$ over $K$. Then a basis for $L$ over $F$ would be

$$
\left\{1, \alpha_{1}, \alpha_{1}^{2}, \alpha_{2}, \alpha_{1} \alpha_{2}, \alpha_{1}^{2} \alpha_{2}\right\}
$$

(See problem 1 below)
Problem 3. We saw in problem 2 above that $\operatorname{dim}_{F} K=3$, so we only need to show that the automorphism group $\operatorname{Aut}(K / F)$ is trivial. To see this, let $\sigma \in \operatorname{Aut}(K / F)$ be such an automorphism. Since $f(x)$ is a polynomial in $F[x]$, the automorphism $\sigma$ has to permute the roots of $f(x)$, so $\sigma\left(\alpha_{1}\right)$ has to be a root of $f(x)$. But in problem 2 above we saw that $K$ doesn't contain the other roots $\alpha_{2}$ and $\alpha_{3}$ of $f(x)$, so $\sigma\left(\alpha_{1}\right)=\alpha_{1}$.

Let $K^{\sigma}$ be the fixed field of $\sigma$. Since $\sigma$ has to fix $F$, we know that $F \subseteq K^{\sigma}$. But since $\sigma\left(\alpha_{1}\right)=\alpha_{1}$, we get $\alpha_{1} \in K^{\sigma}$. Thus $K^{\sigma} \supseteq F\left(\alpha_{1}\right)=K$, so $\sigma$ fixes all of $K$, which means that $\sigma=\mathrm{id}$. Thus $\operatorname{Aut}(K / F)=\{\mathrm{id}\}$.

Problem 4. The roots of the polynomial $f(x)=\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right)\left(x-\alpha_{3}\right)$ are exactly $\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}\right\}$. The field $L$ is by definition the smallest field containing the roots of $f(x)$ (and $k$ ), so it's the smallest field where $f(x)$ splits into linear factors.

## The Cyclic Cubic Extension

Let $k$ be a field, and $\xi \in k$ an element such that the polynomial $\kappa(t)=t^{3}-\xi$ is irreducible.

Problem 1. Let $k_{\kappa}=k[t] /(\kappa(t))$ be the Kronecker construction. Denote by $\alpha$ the equivalence class of $t$ in $k_{\kappa}$, so that $k_{\kappa}=k(\alpha)$ and $\alpha^{3}=\xi$.

Assume first that $k(\alpha)$ doesn't contain a cube root of unity. Let $\sigma \in \operatorname{Aut}(k(\alpha) / k)$ be an automorphism. Then $\sigma(\alpha)$ is also a root of $\kappa(t)$, since $\sigma$ permutes the roots of the polynomial $\kappa(t) \in k[t]$. But now we have

$$
\left(\frac{\sigma(\alpha)}{\alpha}\right)^{3}=\frac{\sigma(\alpha)^{3}}{\alpha^{3}}=\frac{\xi}{\xi}=1
$$

Since $k(\alpha)$ doesn't have a (nontrivial) third root of unity, we have $\frac{\sigma(\alpha)}{\alpha}=1$, so $\sigma(\alpha)=\alpha$. But if the fixed field of $\sigma$ contains both $k$ and $\alpha$, it has to be the whole field $k(\alpha)$, so $\sigma=\mathrm{id}$.

Assume now that $k(\alpha)$ does contain a cube root of unity $\mu$. We have that

$$
(\mu \alpha)^{3}=\mu^{3} \alpha^{3}=1 \cdot \xi=\xi
$$

so $\mu \alpha$ is another root of $\kappa(t)$. Similarly $\mu^{2} \alpha$ is a root of $\kappa(t)$. Thus $\kappa(t)$ has three roots in $k(\alpha)$, and

$$
\kappa(t)=(t-\alpha)(t-\mu \alpha)\left(t-\mu^{2} \alpha\right) .
$$

Since both $\alpha$ and $\mu \alpha$ are roots of the irreducible polynomial $\kappa(t)$, we have two isomorphisms $k[t] /(k(t)) \cong k(\alpha)$ : one sending the equivalence class of $t$ to $\alpha$, and another sending it to $\mu \alpha$. Composing the first isomorphism with the inverse of the second one, we get an isomorphism from $k(\alpha)$ to itself, sending $\alpha$ to $\mu \alpha$ :

$$
k(\alpha) \rightarrow k[t] /(\kappa(t)) \rightarrow k(\alpha)
$$

This is a nontrivial automorphism of $k(\alpha)$ over $k$, so $\operatorname{Aut}(k(\alpha) / k)$ is nontrivial. In fact, $\operatorname{Aut}(k(\alpha) / k)=\left\{\mathrm{id}, \sigma, \sigma^{2}\right\}$ is a cyclic group of order 3. (For details of why this is true, see problem 3 of the last section.)

Finally, if $k(\alpha)$ contains a cube root of unity, I claim that it has to be already in $k$. Otherwise $\mu$ is a root of the irreducible polynomial

$$
\frac{t^{3}-1}{t-1}=t^{2}+t+1
$$

so the extension $k(\mu) / k$ has degree 2 . But by problem 1 below, an extension of degree 3 cannot have a subextension of degree 2 , since 3 is odd.

Problem 2. Let $C_{3}=\left\{1, \sigma, \sigma^{2}\right\}$ be a cyclic group of order 3.
Define a $k$-algebra homomorphism $\phi: k[t] \rightarrow k\left[C_{3}\right]$ by sending $t$ to

$$
\phi(t)=\sigma \in k\left[C_{3}\right] .
$$

Then $\phi\left(t^{3}\right)=\sigma^{3}=1$, so $t^{3}-1 \in \operatorname{Ker}(\phi)$. Thus we can define a homomorphism

$$
\bar{\phi}: k[t] /\left(t^{3}-1\right) \rightarrow k\left[C_{3}\right]
$$

by $\bar{\phi}([g(t)])=\phi(g(t))$ for any polynomial $g(t) \in k[t]$.
Let's show that $\phi$ is an isomorphism. The ring $k[t] /\left(t^{3}-1\right)$ has a $k$-basis $\left\{1, t, t^{2}\right\}$, which is sent to $\left\{1, \sigma, \sigma^{2}\right\}$. Thus $\bar{\phi}$ sends a $k$-basis of $k[t] /\left(t^{3}-1\right)$ to a $k$-basis of $k\left[C_{3}\right]$, so it is bijective. This means that $\bar{\phi}$ is an isomorphism between the two rings.

Assume that $k$ has a cube root of unity $\mu$. Since the polynomial $t^{3}-1$ splits into coprime factors as

$$
t^{3}-1=(t-1)(t-\mu)\left(t-\mu^{2}\right)
$$

we get

$$
\begin{aligned}
k\left[C_{3}\right] \cong k[t] /\left(t^{3}-1\right) & \cong k[t] /(t-1) \times k[t] /(t-\mu) \times k[t] /\left(t-\mu^{2}\right) \\
& \cong k \times k \times k
\end{aligned}
$$

The automorphism from $k[t] /\left(t^{3}-1\right)$ to $k \times k \times k$ sends a polynomial $p(t)$ to the triple $\left(p(1), p(\mu), p\left(\mu^{2}\right)\right)$. We want $e_{1}$ to be sent to $(0,1,0)$, and we can notice that such a polynomial is

$$
\frac{(t-1)\left(t-\mu^{2}\right)}{(\mu-1)\left(\mu-\mu^{2}\right)}=\frac{1}{3}\left(\mu t^{2}+\mu^{2} t+1\right) .
$$

Thus the desired element $e_{1} \in k\left[C_{3}\right]$ is

$$
e_{1}=\frac{\mu \sigma^{2}+\mu^{2} \sigma+1}{3} .
$$

Problem 3. Let $k$ be a field of characteristic 3 . In $k[t]$, the polynomial $t^{3}-1$ factors as $(t-1)^{3}$. Thus, the only root of $t^{3}-1$ is 1 .

## LAST 5 PROBLEMS

Let $k$ be a field containing a cube root of unity $\mu, K$ be a field extension with $\operatorname{dim}_{k} K=3$, and $\sigma \in \operatorname{Aut}(K / k)$ a nontrivial automorphism.

Problem 1. Suppose that $\operatorname{dim}_{K} L=m$ and $\operatorname{dim}_{L} M=n$. Choose $\left\{a_{1}, \ldots, a_{m}\right\}$ to be a $K$-basis of $L$ and $\left\{b_{1}, \ldots, b_{n}\right\}$ to be an $L$-basis of $M$. I claim that now the $m n$ elements in

$$
\left\{a_{i} b_{j} \mid i=1, \ldots, m, j=1, \ldots, n\right\}
$$

are a $K$-basis for $M$. In particular, $\operatorname{dim}_{K} M=m n$.
To prove that the $\left(a_{i} b_{j}\right)$ span $M$ over $K$, let $\alpha \in M$. Now $\alpha$ can be written as

$$
\alpha=\sum_{j=1}^{n} c_{j} b_{j}
$$

for some $c_{j} \in L$. Also the elements $c_{j}$ can be written as

$$
c_{j}=\sum_{i=1}^{m} x_{i j} a_{i}
$$

for some $x_{i j} \in K$. Thus we have

$$
\alpha=\sum_{j=1}^{n} \sum_{i=1}^{m} x_{i j} a_{i} b_{j},
$$

so the elements $a_{i} b_{j}$ generate $M$ over $K$.
Finally, let's show that $a_{i} b_{j}$ are linearly independent over $K$. Suppose that a linear combination

$$
\sum_{j=1}^{n}\left(\sum_{i=1}^{m} x_{i j} a_{i}\right) b_{j}=0
$$

for $x_{i j} \in K$. But this is a linear combination in $b_{j}$ with the coefficients $\sum_{i=1}^{m} x_{i j} a_{i}$ in the field $L$, so we must have

$$
\sum_{i=1}^{m} x_{i j} a_{i}=0 \quad \text { for all } i .
$$

But this means that $x_{i j}=0$, since $a_{i}$ are linearly independent.
Problem 2. Pick an element $\alpha \in K$, such that $\alpha \notin k$. Now by the above problem 1 we see that $K=k(\alpha)$, since

$$
3=\left(\operatorname{dim}_{k} k(\alpha)\right)\left(\operatorname{dim}_{k(\alpha)} K\right),
$$

and $\operatorname{dim}_{k} k(\alpha) \neq 1$. (With similar reasoning you can show that $K^{\sigma}=k$.)
Let $f(t) \in k[t]$ be the minimal polynomial of $\alpha$ over $k$. Now $\sigma$ permutes the roots of $f(t)$.

An automorphism is determined by where it maps $\alpha$, in the following sense: If $\sigma$ and $\tau$ are two automorphisms in $\operatorname{Aut}(K / k)$ such that $\sigma(\alpha)=\tau(\alpha)$, then $\sigma=\tau$. This is because the fixed field of $\tau^{-1} \sigma$ contains $k$ and $\alpha$, so it is all of $K$, i.e. $\tau^{-1} \sigma=\mathrm{id}$. Since $\alpha$ has to map to one of the roots of $f(t)$, there are at most 3 automorphisms in $\operatorname{Aut}(K / k)$.

If $\sigma$ had order 2 , then the polynomial

$$
(t-\alpha)(t-\sigma(\alpha))
$$

has its coefficients in $K^{\sigma}=k$, and it has degree 2. This is a contradiction with the fact that the minimal polynomial of $\alpha$ has degree 3 .

Problem 3. The solution of problem 2 proves that $\operatorname{Aut}(K / k)$ is cyclic group of order 3.

Problem 4. Let $\alpha \in K$ be a root of $f(t)$. Then $k(\alpha)$ is a subfield of $K$ which contains $k$ but is not equal to $k$. By our standard dimension argument, we see that $K=k(\alpha)$, and

$$
\operatorname{deg}(f(t))=\operatorname{dim}_{k} k(\alpha)=\operatorname{dim}_{k} K=3
$$

The (distinct) elements $\alpha, \sigma(\alpha)$ and $\sigma^{2}(\alpha)$ are roots of $f(t)$, so $f(t)$ is divisible by

$$
(t-\alpha)(t-\sigma(\alpha))\left(t-\sigma^{2}(\alpha)\right)
$$

Because we already saw that $\operatorname{deg} f(t)=3$, we know that $f(t)$ is constant multiple of the above polynomial.

Problem 5. The elements $e_{i} \in k\left[C_{3}\right]$ for $i=0,1,2$ satisfy

$$
\begin{aligned}
e_{0}+e_{1}+e_{2} & =1 \\
\left(\sigma-\mu^{i}\right) e_{i} & =0 \\
e_{i}^{2} & =e_{i} \\
e_{i} e_{j} & =0 \text { for } i \neq j .
\end{aligned}
$$

We identify the group $\operatorname{Aut}(K / k)=\left\{\mathrm{id}, \sigma, \sigma^{2}\right\}$ with $C_{3}$. Then the elements of the group ring $k\left[C_{3}\right]$ give maps $K \rightarrow K$, which are linear over $k$. The properties above imply that

$$
K=\operatorname{Im}\left(e_{0}\right) \oplus \operatorname{Im}\left(e_{1}\right) \oplus \operatorname{Im}\left(e_{2}\right),
$$

and that $\operatorname{Im}\left(e_{0}\right) \subseteq K^{\sigma}=k$. This means that $\operatorname{Im}\left(e_{0}\right)$ is (at most) 1-dimensional, so $\operatorname{Im}\left(e_{i}\right)$ has to be nonzero for either $i=1$ or $i=2$.

Now, let $\eta \in \operatorname{Im}\left(e_{i}\right)$ be nonzero. Then $\sigma(\eta)=\mu^{i} \eta \neq \eta$, so $\eta \notin k$. This implies that $K=k(\eta)$ (by the standard dimension argument). Also,

$$
\sigma\left(\eta^{3}\right)=(\sigma(\eta))^{3}=\mu^{3 i} \eta^{3}=\eta^{3}
$$

so $\eta^{3} \in K^{\sigma}=k$.

