
SOLUTIONS TO PROBLEM SET 3

MATTI ÅSTRAND

The General Cubic Extension

Denote L = k(α1, α2, α3), F = k(a1, a2, a3) and K = F (α1). The polynomial
f(x) = x3 − a1x

2 + a2x− a3 = (x− α1)(x− α2)(x− α3)
is irreducible in F [x]. The symmetric group S3 acts on L by permuting the αi, and
fixes the field F .

Problem 2. The field K = F (α1) is generated over F by the element α1, which is a
root of the irreducible polynomial f(x) ∈ F [x], so K ∼= F [t]/(f(t)) and has a basis
{1, α1, α

2
1} over F . Thus dimF K = 3.

Let’s now consider f(x) as a polynomial inK[x]. It has a linear factor corresponding
to the root α1 ∈ K, so it factors as

f(x) = (x− α1)g(x),
where g(x) is a quadratic polynomial in K[x]. (Note: actually g(x) = (x−α2)(x−α3),
but this factoring takes place in L[x].)

We get L from K by adding the roots of the quadratic polynomial g(x). Thus the
extension is either quadratic (if the roots of g(x) are not in K) or trivial, i.e. L = K
(if g(x) has roots already in K).

Turns out that L is a quadratic extension of K: for this we need to show that
the two fields are not equal. Let σ = (23) be the transposition swapping α2 and α3.
Denote by Lσ the fixed field of σ. Since σ obviously doesn’t fix every element of L
(e.g. it doesn’t fix α2) we see that Lσ ( L. On the other hand, σ does fix everything
in F and also α1, so it fixes everything in K. We then have

K ⊆ Lσ ( L.

(Note that this also proves that K is exactly the fixed field Lσ.)
Now we know that dimK L = 2, and L has a basis {1, α2} over K. Then a basis

for L over F would be
{1, α1, α

2
1, α2, α1α2, α

2
1α2}.

(See problem 1 below)

Problem 3. We saw in problem 2 above that dimF K = 3, so we only need to show
that the automorphism group Aut(K/F ) is trivial. To see this, let σ ∈ Aut(K/F ) be
such an automorphism. Since f(x) is a polynomial in F [x], the automorphism σ has
to permute the roots of f(x), so σ(α1) has to be a root of f(x). But in problem 2
above we saw that K doesn’t contain the other roots α2 and α3 of f(x), so σ(α1) = α1.

Let Kσ be the fixed field of σ. Since σ has to fix F , we know that F ⊆ Kσ. But
since σ(α1) = α1, we get α1 ∈ Kσ. Thus Kσ ⊇ F (α1) = K, so σ fixes all of K, which
means that σ = id. Thus Aut(K/F ) = {id}.
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Problem 4. The roots of the polynomial f(x) = (x−α1)(x−α2)(x−α3) are exactly
{α1, α2, α3}. The field L is by definition the smallest field containing the roots of
f(x) (and k), so it’s the smallest field where f(x) splits into linear factors.

The Cyclic Cubic Extension

Let k be a field, and ξ ∈ k an element such that the polynomial κ(t) = t3 − ξ is
irreducible.

Problem 1. Let kκ = k[t]/(κ(t)) be the Kronecker construction. Denote by α the
equivalence class of t in kκ, so that kκ = k(α) and α3 = ξ.

Assume first that k(α) doesn’t contain a cube root of unity. Let σ ∈ Aut(k(α)/k)
be an automorphism. Then σ(α) is also a root of κ(t), since σ permutes the roots of
the polynomial κ(t) ∈ k[t]. But now we have(

σ(α)
α

)3

= σ(α)3

α3 = ξ

ξ
= 1.

Since k(α) doesn’t have a (nontrivial) third root of unity, we have σ(α)
α

= 1, so
σ(α) = α. But if the fixed field of σ contains both k and α, it has to be the whole
field k(α), so σ = id.

Assume now that k(α) does contain a cube root of unity µ. We have that

(µα)3 = µ3α3 = 1 · ξ = ξ,

so µα is another root of κ(t). Similarly µ2α is a root of κ(t). Thus κ(t) has three
roots in k(α), and

κ(t) = (t− α)(t− µα)(t− µ2α).

Since both α and µα are roots of the irreducible polynomial κ(t), we have two
isomorphisms k[t]/(κ(t)) ∼= k(α): one sending the equivalence class of t to α, and
another sending it to µα. Composing the first isomorphism with the inverse of the
second one, we get an isomorphism from k(α) to itself, sending α to µα:

k(α)→ k[t]/(κ(t))→ k(α)

This is a nontrivial automorphism of k(α) over k, so Aut(k(α)/k) is nontrivial. In
fact, Aut(k(α)/k) = {id, σ, σ2} is a cyclic group of order 3. (For details of why this
is true, see problem 3 of the last section.)

Finally, if k(α) contains a cube root of unity, I claim that it has to be already in k.
Otherwise µ is a root of the irreducible polynomial

t3 − 1
t− 1 = t2 + t+ 1,

so the extension k(µ)/k has degree 2. But by problem 1 below, an extension of
degree 3 cannot have a subextension of degree 2, since 3 is odd.
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Problem 2. Let C3 = {1, σ, σ2} be a cyclic group of order 3.
Define a k-algebra homomorphism φ : k[t]→ k[C3] by sending t to

φ(t) = σ ∈ k[C3].
Then φ(t3) = σ3 = 1, so t3 − 1 ∈ Ker(φ). Thus we can define a homomorphism

φ : k[t]/(t3 − 1)→ k[C3]
by φ([g(t)]) = φ(g(t)) for any polynomial g(t) ∈ k[t].

Let’s show that φ is an isomorphism. The ring k[t]/(t3 − 1) has a k-basis {1, t, t2},
which is sent to {1, σ, σ2}. Thus φ sends a k-basis of k[t]/(t3−1) to a k-basis of k[C3],
so it is bijective. This means that φ is an isomorphism between the two rings.

Assume that k has a cube root of unity µ. Since the polynomial t3 − 1 splits into
coprime factors as

t3 − 1 = (t− 1)(t− µ)(t− µ2),
we get

k[C3] ∼= k[t]/(t3 − 1) ∼= k[t]/(t− 1)× k[t]/(t− µ)× k[t]/(t− µ2)
∼= k × k × k.

The automorphism from k[t]/(t3 − 1) to k × k × k sends a polynomial p(t) to the
triple (p(1), p(µ), p(µ2)). We want e1 to be sent to (0, 1, 0), and we can notice that
such a polynomial is

(t− 1)(t− µ2)
(µ− 1)(µ− µ2) = 1

3(µ t2 + µ2t+ 1).

Thus the desired element e1 ∈ k[C3] is

e1 = µσ2 + µ2σ + 1
3 .

Problem 3. Let k be a field of characteristic 3. In k[t], the polynomial t3− 1 factors
as (t− 1)3. Thus, the only root of t3 − 1 is 1.

Last 5 problems

Let k be a field containing a cube root of unity µ, K be a field extension with
dimkK = 3, and σ ∈ Aut(K/k) a nontrivial automorphism.

Problem 1. Suppose that dimK L = m and dimLM = n. Choose {a1, . . . , am} to
be a K-basis of L and {b1, . . . , bn} to be an L-basis of M . I claim that now the mn
elements in

{aibj | i = 1, . . . ,m, j = 1, . . . , n}
are a K-basis for M . In particular, dimKM = mn.

To prove that the (aibj) span M over K, let α ∈M . Now α can be written as

α =
n∑
j=1

cjbj

for some cj ∈ L. Also the elements cj can be written as

cj =
m∑
i=1

xijai
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for some xij ∈ K. Thus we have

α =
n∑
j=1

m∑
i=1

xijaibj,

so the elements aibj generate M over K.
Finally, let’s show that aibj are linearly independent over K. Suppose that a linear

combination
n∑
j=1

(
m∑
i=1

xijai)bj = 0

for xij ∈ K. But this is a linear combination in bj with the coefficients ∑m
i=1 xijai in

the field L, so we must have
m∑
i=1

xijai = 0 for all i.

But this means that xij = 0, since ai are linearly independent.

Problem 2. Pick an element α ∈ K, such that α /∈ k. Now by the above problem 1
we see that K = k(α), since

3 = (dimk k(α))(dimk(α) K),

and dimk k(α) 6= 1. (With similar reasoning you can show that Kσ = k.)
Let f(t) ∈ k[t] be the minimal polynomial of α over k. Now σ permutes the roots

of f(t).
An automorphism is determined by where it maps α, in the following sense: If σ

and τ are two automorphisms in Aut(K/k) such that σ(α) = τ(α), then σ = τ . This
is because the fixed field of τ−1σ contains k and α, so it is all of K, i.e. τ−1σ = id.
Since α has to map to one of the roots of f(t), there are at most 3 automorphisms in
Aut(K/k).

If σ had order 2, then the polynomial

(t− α)(t− σ(α))

has its coefficients in Kσ = k, and it has degree 2. This is a contradiction with the
fact that the minimal polynomial of α has degree 3.

Problem 3. The solution of problem 2 proves that Aut(K/k) is cyclic group of order
3.

Problem 4. Let α ∈ K be a root of f(t). Then k(α) is a subfield of K which
contains k but is not equal to k. By our standard dimension argument, we see that
K = k(α), and

deg(f(t)) = dimk k(α) = dimkK = 3.
The (distinct) elements α, σ(α) and σ2(α) are roots of f(t), so f(t) is divisible by

(t− α)(t− σ(α))(t− σ2(α)).

Because we already saw that deg f(t) = 3, we know that f(t) is constant multiple of
the above polynomial.
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Problem 5. The elements ei ∈ k[C3] for i = 0, 1, 2 satisfy
e0 + e1 + e2 = 1

(σ − µi)ei = 0
e2
i = ei

eiej = 0 for i 6= j.
We identify the group Aut(K/k) = {id, σ, σ2} with C3. Then the elements of the

group ring k[C3] give maps K → K, which are linear over k. The properties above
imply that

K = Im(e0)⊕ Im(e1)⊕ Im(e2),
and that Im(e0) ⊆ Kσ = k. This means that Im(e0) is (at most) 1-dimensional, so
Im(ei) has to be nonzero for either i = 1 or i = 2.

Now, let η ∈ Im(ei) be nonzero. Then σ(η) = µiη 6= η, so η /∈ k. This implies that
K = k(η) (by the standard dimension argument). Also,

σ(η3) = (σ(η))3 = µ3iη3 = η3,

so η3 ∈ Kσ = k.
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