SOLUTIONS TO PROBLEM SET 4

MATTI ÅSTRAND

The Cubic Formula

Denote $L=k\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)$ and $K=k\left(a_{1}, a_{2}, a_{3}\right)$, and define permutations: $\rho=(123)$ and $\nu=(12)$.
Problem 3. The element $\epsilon_{1}+\epsilon_{2} \in k\left[S_{3}\right]$ is equal to $\left(1+\rho+\rho^{2}\right) / 3$. Thus M is the same as the image of $\left(1+\rho+\rho^{2}\right) / 3$, which I'll denote by φ.

Notice that if $\beta \in L$, then $\rho(\varphi \beta)=(\rho \varphi) \beta=\varphi \beta$. This means that M is contained in the fixed field of ρ, i.e. $M \subseteq L^{\rho}$. Let's show that in fact $M=L^{\rho}$. We need to prove the other inclusion, that $L^{\rho} \subseteq M$. If $\beta \in L^{\rho}$, then $\rho(\beta)=\beta$, so

$$
\varphi(\beta)=\left(\beta+\rho(\beta)+\rho^{2}(\beta)\right) / 3=(\beta+\beta+\beta) / 3=\beta
$$

Thus β is the image of itself under the map φ, so $\beta \in M$.
We have shown that $M=L^{\rho}$, so in particular it is a field. Clearly $M \neq L$, since ρ is a nontrivial automorphism. Also it is easy to see that $M \neq K$: consider

$$
\varphi\left(\alpha_{1} \alpha_{2}^{2}\right)=\alpha_{1} \alpha_{2}^{2}+\alpha_{2} \alpha_{3}^{2}+\alpha_{3} \alpha_{1}^{2} .
$$

This element is in M, but it is not symmetric: it is not fixed by transpositions. We get that $K \subsetneq M \subsetneq L$, and since $\operatorname{dim}_{K} L=6$, we know that $\operatorname{dim}_{K} M$ and $\operatorname{dim}_{M} L$ are 2 and 3 in some order.

We can finish the argument by finding an element in $M \backslash K$ whose square is in K. Such an element is for example

$$
\sqrt{\sigma}=(1-\nu) \varphi\left(\alpha_{1} \alpha_{2}^{2}\right)=\alpha_{1} \alpha_{2}^{2}+\alpha_{2} \alpha_{3}^{2}+\alpha_{3} \alpha_{1}^{2}-\left(\alpha_{1}^{2} \alpha_{2}+\alpha_{2}^{2} \alpha_{3}+\alpha_{3}^{2} \alpha_{1}\right)
$$

Since $\nu(\sqrt{\sigma})=-\sqrt{\sigma}$, it follows that $\nu(\sigma)=\sigma$, so $\sigma \in K$.
Remark: You can find an explicit formula for σ in terms of a_{1}, a_{2}, a_{3} :

$$
\sigma=a_{1}^{2} a_{2}^{2}-4 a_{3} a_{1}^{3}-4 a_{2}^{3}+18 a_{1} a_{2} a_{3}-27 a_{3}^{2}
$$

Problem 4. This follows directly from the previous problem set: L / M is a degree 3 extension, M contains a cube root of unity, and there is a nontrivial automorphism ρ of L / M. Thus $\operatorname{Aut}(L / M)=\left\{1, \rho, \rho^{2}\right\}=A_{3}$.

Problem 5. The e_{1} in the earlier problem set corresponds to $1+\mu^{2} \rho+\mu \rho^{2}$ in our notation (up to a constant factor), so we get

$$
\eta=e_{1}\left(\alpha_{1}\right)=\alpha_{1}+\mu^{2} \alpha_{2}+\mu \alpha_{3}
$$

It easy to see that $\rho(\eta)=\mu \eta$, so $\rho\left(\eta^{3}\right)=\eta^{3}$. This means that $\eta^{3} \in M$, so η is the desired element, and we can choose $\tau=\eta^{3}$.

Remark: Again, we can find an expression for τ in terms of $a_{1}, a_{2}, a_{3}, \sqrt{\sigma}$:

$$
\tau=a_{1}^{3}-\frac{9 a_{1} a_{2}}{2}+\frac{(6 \mu+3) \sqrt{\sigma}}{2}+\frac{27 a_{3}}{2}
$$

Problem 6. Follows from earlier problems: we know that $\{1, \sqrt{\sigma}\}$ is a basis for M / K and $\left\{1, \eta, \eta^{2}\right\}$ is a basis for L / M.
Problem 7. Denote

$$
\eta^{\prime}=\nu(\eta)=\mu^{2} \alpha_{1}+\alpha_{2}+\mu \alpha_{3} .
$$

This satisfies $\rho\left(\eta^{\prime}\right)=\mu^{2} \eta^{\prime}$, so

$$
\rho\left(\eta \eta^{\prime}\right)=(\mu \eta)\left(\mu^{2} \eta^{\prime}\right)=\eta \eta^{\prime} .
$$

We get that $\eta \eta^{\prime} \in M$, so it can be written in terms of $a_{1}, a_{2}, a_{3}, \sqrt{\sigma}$. In fact, we can check that

$$
\begin{aligned}
\eta \eta^{\prime} & =\mu^{2}\left(\alpha_{1}^{2}+\alpha_{2}^{2}+\alpha_{3}^{2}\right)+(\mu+1)\left(\alpha_{1} \alpha_{2}+\alpha_{2} \alpha_{3}+\alpha_{3} \alpha_{1}\right) \\
& =\mu^{2}\left(a_{1}^{2}-2 a_{2}\right)-\mu^{2} a_{2}=\mu^{2}\left(a_{1}^{2}-3 a_{2}\right) .
\end{aligned}
$$

Thus we have an expression for η^{\prime} in terms of a_{i} and $\eta=\sqrt[3]{\tau}$. Now we can easily write α_{i} as linear combinations of the following:

$$
\begin{aligned}
a_{1} & =\alpha_{1}+\alpha_{2}+\alpha_{3} \\
\eta & =\alpha_{1}+\mu^{2} \alpha_{2}+\mu \alpha_{3} \\
\eta^{\prime} & =\mu^{2} \alpha_{1}+\alpha_{2}+\mu \alpha_{3}
\end{aligned}
$$

Namely:

$$
\begin{aligned}
& \alpha_{1}=\frac{1}{3}\left(a_{1}+\eta+\mu \eta^{\prime}\right) \\
& \alpha_{2}=\frac{1}{3}\left(a_{1}+\mu \eta+\eta^{\prime}\right) \\
& \alpha_{3}=\frac{1}{3}\left(a_{1}+\mu^{2} \eta+\mu^{2} \eta^{\prime}\right)
\end{aligned}
$$

