1 Some problems from last semester

1. Suppose that \(f_k(x), k = 1, \ldots, \infty \) is a sequence of continuous functions on \([0,1]\) which converge pointwise to a continuous function \(f(x) \). Must they converge uniformly? (Proof or counterexample.)

2. Define \(f(x,y) \) for \((x,y) \in \mathbb{R}^2\) by \(f(0,0) = 0 \) and
\[
f(x,y) = \frac{x^2y}{\sqrt{|x|^3 + |y|^3}}
\]
for \((x,y) \neq (0,0)\). Are the partial derivatives \(\partial f / \partial x \) and \(\partial f / \partial y \) well defined at \((0,0)\)? Is \(f(x,y) \) differentiable at \((0,0)\)?

3. Give an example of a bounded function \(f : [0,1] \to \mathbb{R} \) which is Riemann integrable but which is discontinuous at an infinite number of points.

4. Let \(C[0,1] \) be the set of real-valued continuous functions on \([0,1]\) with the \(\sup \) norm. Give an example of a subset which is closed in the \(\sup \) norm and which is pointwise compact but which is not equicontinuous.

2 Some problems from the book

Do the following: (i) p. 334 #4; (ii) p. 344 #5; (iii) p. 355 # 5 (In the second part, justify your answer); (iv) p. 367 #6; (v) p. 388 #37.

3 Some problems on the delta function

1. Show that \(\delta(ax) = \delta(x)/|a| \). Hint: Consider \(\int \delta(ax) \, d(ax) \); remember that \(\delta(x) = \delta(-x) \).
2. Show that
\[\delta(f(x)) = \sum_i \frac{\delta(x_i - x)}{|df/dx_i|} \]
where the \(x_i \) are the zeros of \(f(x) \) and \(df/dx_i \) is the derivative of \(f \) evaluated at \(x_i \). Hint: Expand \(f(x) \) near each zero in a Taylor series and use the preceding. You may assume that \(f \) is a polynomial but it is not necessary.

3. Recall that the Fourier transform \(\hat{f} \) of a function \(f \) of one variable is given by
\[\hat{f}(k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-ikx} f(x) \, dx, \]
and that its inverse is given by
\[f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{ikx} \hat{f}(xk) \, dk. \]
(Note. Conventions vary. Some authors place \(1/2\pi \) in front of the first integral and omit the \(1/\sqrt{2\pi} \) from before the second and some do the reverse; I prefer the present “balanced” form.) Show that
\[\frac{1}{2\pi} \int_{-\infty}^{\infty} e^{ik(x-x')} dk = \delta(x-x'). \]
We saw that the expression of \(\delta(x) \) (extended periodically) as a Fourier series is
\[\delta(x) = \frac{1}{2\pi} \sum_{k=-\infty}^{\infty} e^{ikx}. \]
Show that the sum on the right is \((C,1) \) summable to 0 for \(x \) not a multiple of \(2\pi \). (p. 572 #2)

4. Show that in analogy with the formula for the delta function as a Fourier series, with the Fourier transform we have
\[\delta(x - x') = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{ik(x-x')} dk. \]

5. What is the analog of the previous summability assertion in the present case? Does it hold?

4 A problem on the web

Go to the site www.efunda.com/math/Laguerre/index.cfm (or get to it through Google by searching on “‘Laguerre polynomials’ +complete”), find an egregious error, and compose an appropriate short letter to the webmaster.