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Abstract

In this short note we study the derived intersection of two smooth
subvarieties of a smooth variety and we give a necessary and sufficient
criterion for the intersection to be formal. As a consequence we obtain
a derived base change theorem for non-transversal intersections. We
also sketch an application to the study of the derived fixed locus of a
finite group action.

1. Introduction

1.1. Let S be a smooth variety S over a field of characteristic zero and
let X and Y be smooth subvarieties of S. We shall assume that X and Y
intersect cleanly (meaning that their scheme theoretic intersectionW = X×S
Y is smooth) but not necessarily transversely. Derived algebraic geometry
associates to this data a geometric object, the derived intersection of X and
Y,

W ′ = X×RS Y.

It is a differential graded (dg) scheme whose structure complex is constructed
by taking the derived tensor product of the structure sheaves of X and
Y. (The reader unfamiliar with the subject of dg schemes is referred to
Section ??.) The underived intersection W naturally sits inside W ′ as a
closed subscheme.
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We organize these spaces and the maps between them in the diagram

W ′

π ''

q ′

$$

p ′

##
W

ϕ
gg

p //

q

��

X

i
��

Y
j // S.

The purpose of this note is to understand when W ′ is as simple as possible.
Our main result (Theorem 1.8) makes this precise in two ways. In algebraic
terms it gives a necessary and sufficient criterion for W ′ to be formal in the
sense of [?]. In geometric terms it gives a necessary and sufficient condition
for the existence of a map π : W ′ → W exhibiting W ′ as the total space of
a shift E[−1] of a vector bundle E over W,

W ′ = Tot(E[−1]).

When this holds we gain a geometric understanding of the structure of the
maps ϕ, p ′ and q ′: ϕ is the inclusion of the zero section of the bundle
TotE[−1], and p ′ and q ′ factor through the bundle map π.

1.2. The problem we study originates in classical intersection theory. While
the scheme-theoretic intersection W is determined algebraically by the un-
derived tensor product

OW = OX ⊗OS
OY ,

Serre [?] argued that in order to obtain a theory with good formal properties
we need to use instead the derived tensor product

OW ′ = OX ⊗LOS
OY .

Since OW ′ is naturally a commutative dg algebra we can regard it as the
structure complex of a dg scheme W ′.

1.3. For classical applications it suffices to work with the class of OW ′ in
K-theory. Put differently, we only need to know the sheaves.

H −∗(OW ′) = TorS∗(OX,OY).

A local calculation as in [?, Proposition A.3] shows that these sheaves are
the exterior powers ∧∗E∨ of the excess bundle E, the vector bundle on W
defined by

E =
TS

TX + TY
.
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(We omit writing the restrictions from X, Y, S to W in formulas like the one
above. So when we write TX we mean TX|W , the restriction of the tangent
bundle of X to W.) The excess bundle E is a vector bundle on W of rank
dimS+dimW−dimX−dim Y which measures the failure of the intersection
to be transversal.

1.4. For certain problems, however, it is not enough to know just the Tor
sheaves H k(OW ′); we need to understand the full dg algebra OW ′ . For
example there is considerable interest in computing Ext∗S(i∗F, j∗G) for vector
bundles F and G on X and on Y. These groups can be computed using the
spectral sequence

2Epq = Hp(W,F∨ ⊗G⊗∧qE) ⇒ Extp+qS (i∗F, j∗G),

from [?, Theorem A.1]. (Again, we omit the restrictions of F and G to W.)
The differentials in this spectral sequence arise as obstructions to splitting
the canonical filtration on OW ′ , that is, they vanish if there is a isomorphism

OW ′ ∼=
⊕
k

H k(OW ′)[−k].

1.5. In the above discussion we have skated over an important detail. The
splitting of the structure complex of a dg scheme is not an intrinsic property
of the dg scheme; rather, the concept only makes sense for a morphism from
a dg scheme to a base scheme.

Consider a dg scheme Z ′ over an ordinary scheme Z, i.e., a dg scheme
endowed with a structure morphism s : Z ′ → Z. We shall say that Z ′ is
formal over Z if s∗OZ ′ is split as an object of D(Z), in other words if there
exists a formality isomorphism

s∗OZ ′ ∼=
⊕
k

H k(s∗OZ ′)[−k].

The terminology is inspired by [?], where it is proved that the de Rham
complex of a compact Kähler manifold is formal (over the manifold itself).

1.6. The derived intersection W ′ = X ×RS Y can be viewed as a dg scheme
over several base schemes: either one of X, Y, S, or X×Y can naturally serve
as an underlying scheme for W ′. (However, note that in general we can not
present W ′ as a dg scheme over W.) Our primary motivation for studying
derived intersections comes from our desire to understand the degeneration
of the spectral sequence in (1.4). For this purpose it is most useful to regard
W ′ as a dg scheme over X× Y. Indeed, in this approach the structure sheaf
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OW ′ of W ′ is the kernel of the functor j∗i∗ : D(X) → D(Y) between dg
enhancements D(X), D(Y) of the derived categories of X and Y. (We omit
the R’s and L’s in front of derived functors for simplicity.)

1.7. Formality of W ′/X× Y turns out to be closely related to properties of
the inclusion W ↪→W ′. We shall say that a map of spaces W →W ′ splits if
it admits a left inverse. If W →W ′ is a closed embedding we shall say that
it splits to first order if the induced map W → W ′(1) splits, where W ′(1) is
the first infinitesimal neighborhood of W inside W ′.

The above concepts also make perfect sense for spaces (schemes, dg
schemes) over a fixed base scheme, in which case we require the inverse
map to be a map over the base scheme.

We are now ready to state the main theorem of the paper 1.

1.8. Theorem. The following statements are equivalent.

(1) There exists an isomorphism of dg functors D(X) → D(Y)

j∗i∗(− ) ∼= q∗(p
∗(− )⊗ S(E∨[1]).

(2) W ′ is isomorphic to TotW E[−1] as dg schemes over X× Y.

(3) W ′ is formal as a dg scheme over X× Y.

(4) The inclusion W →W ′ splits over X× Y.

(5) The inclusion W →W ′ splits to first order over X× Y.

(6) The short exact sequence

0→ TX + TY → TS → E→ 0

of vector bundles on W splits.

1.9. The above theorem can be seen as a generalization of several clas-
sical results: base change for flat morphisms or, more generally, for Tor-
independent morphisms; the Hochschild-Kostant-Rosenberg isomorphism
for schemes [?]; and the formality theorem for derived self-intersections of
the first two authors [?].

1While working on the final draft of this paper the authors became aware that a closely
related result was obtained independently and at about the same time by Grivaux [?]
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1.10. However, the main application we have in mind for Theorem 1.8 is in
the study of derived fixed loci. Let ϕ be a finite-order automorphism of a
smooth variety Z. We are interested in the fixed locus W of ϕ,

W = Zϕ = {z ∈ Z | ϕ(z) = z}.

This fixed locus can be studied using intersection theory, as we can view W

as the intersection (inside Z× Z) of the diagonal ∆ and the graph ∆ϕ of ϕ,

W = ∆×Z×Z ∆ϕ.

1.11. This description makes it clear that the expected dimension of the
fixed locus is zero. Whenever W is positive dimensional the cause is a failure
of transversality of ∆ and ∆ϕ. It then makes sense to study the derived fixed
locus of ϕ, W ′, which we define as the derived intersection

W ′ = ∆×RZ×Z ∆ϕ.

The excess intersection bundle E for this problem is

E = (TZ)ϕ =
TZ

〈v−ϕ(v)〉
,

the vector bundle on W obtained by taking coinvariants of TZ|W with respect
to the action of ϕ.

In this setup Theorem 1.8 allows us to get the following geometric charac-
terization of the derived fixed locus W ′.

1.12. Corollary. The derived fixed locus W ′ is isomorphic, as a dg scheme
over Z× Z, to the total space over W of the dg vector bundle (TZ)ϕ[−1],

W ′ ∼= TotW ((TZ)ϕ[−1]) .

1.13. We apply the above result to the study of orbifolds. Let G be a finite
group acting on a smooth variety Z, and let Z be the quotient stack [Z/G].
We are interested in the relationship between the inertia stack of Z

IZ = Z ×Z×Z Z

and the free loop space of Z , which is the corresponding derived intersection

LZ = Z ×RZ×Z Z .

As usual we have the maps i, j, p, q, p ′, q ′, ϕ as in (1.1). Note that i = j and
p = q.

The formality of the derived fixed loci implies the following result.
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1.14. Corollary. There exists a map π : LZ → IZ presenting the free
loop space LZ as the total space of a vector bundle over the inertia stack
IZ ,

LZ = TotIZ (E[−1]).

In particular, the two projections p ′ and q ′ are equal and there is a natural
isomorphism of dg functors

q ′∗p
′∗(− ) ∼= − ⊗ q ′∗OLZ .

1.15. In order to state the above result in more concrete terms (in particular,
in order to describe the vector bundle E) we need the following notations
for g ∈ G:

– Zg is the (underived) fixed locus of g in Z;

– ig is the closed embedding of Zg in Z;

– cg is the codimension of Zg in Z;

– ωg is the relative dualizing bundle of the embedding ig, that is, the
top exterior power of the normal bundle NZg/Z of Zg in Z,

ωg = ∧cgNZg/Z;

– Tg is the vector bundle on Zg obtained by taking coinvariants of TZ|Zg

with respect to the action of g;

– Ωjg is the dual, along Zg, of ∧jTg;

– S(Ω1g[1]) is the symmetric algebra of Ω1g[1]), i.e., the object of D(Zg)

S(Ω1g[1]) = ⊕Ωjg[j].

1.16. The inertia stack IZ is a global quotient stack, realized as the quotient

IZ = [IZ/G],

where IZ is the smooth, disconnected scheme

IZ =
∐
g∈G

Zg.

The action of h ∈ G on Zg maps it to Zhgh
−1

, and hence IZ is a smooth
Deligne-Mumford stack whose connected components are in one-to-one cor-
respondence with the conjugacy classes in G. The component of IZ corre-
sponding to the conjugacy class [g] is isomorphic to [Zg/C(g)] where C(g)
is the centralizer of g in G.
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1.17. Corollary. On the component [Zg/C(g)] of IZ corresponding to the
conjugacy class [g] the bundle E is given by the C(g)-equivariant bundle Tg.
Therefore the object q ′∗OLZ ∈ D(Z ) is represented by the G-equivariant
object of D(Z) ⊕

g∈G
ig,∗ S(ΩgZ[1]).

The above result yields immediately a Hochschild-Kostant-Rosenberg iso-
morphism for orbifolds, generalizing results of of Baranovsky [?] and Gan-
ter [?].

1.18. Corollary. We have

(1) ∆∗∆∗OZ =
⊕

g∈G ig,∗S(Ω
g
Z[1]).

(2) HH∗(Z ) =
(⊕

g∈G
⊕

q−p=∗H
p(Zg,Ωqg)

)
G
.

(3) HH∗(Z ) =
(⊕

g∈G
⊕

p+q=∗H
p−cg(Zg,∧qTg ⊗ωg)

)G
.

1.19. The paper is organized as follows. In Section ?? we collect some
general results about dg schemes in the sense of Kapranov. In particular
we discuss how a dg scheme W ′ presented over a base scheme S can be
regarded as a dg scheme over S and we construct presentations of the derived
intersection W ′ over X, Y, X× Y, and S. In Section ?? we present the proof
of Theorem 1.8. In the final section of the paper we discuss applications to
orbifolds, and present proofs of Corollaries 1.12, 1.14, 1.17, and 1.18.

1.20. Conventions. We work over a field of characteristic zero. The same
results also hold when the characteristic of the ground field is sufficiently
large; we shall make it explicit in the statement of each theorem how large
the characteristic needs to be for the results to hold. All schemes are as-
sumed to be smooth, quasi-projective over this field.

1.21. Acknowledgments. The present project originates in an old discus-
sion the second author had around 1996 with Dan Abramovich. We have
benefited from stimulating conversations with Tony Pantev. The authors
are supported by the National Science Foundation under Grants No. DMS-
0901224, DMS-1101558, and DMS-1200721.
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2. Background on dg schemes

In this section we review some facts from the basic theory of differential
graded schemes, following the work of Ciocan-Fontanine and Kapranov [?].
We emphasize the point of view that a dg scheme Z ′ = (Z,OZ ′) should be
thought of as a dg scheme over Z, and explain how the derived intersection
W ′ = X ×RS Y can be viewed in a natural way as a dg scheme over X, Y,
X× Y, or S.

2.1. Following Ciocan-Fontanine and Kapranov [?], a differential graded
scheme Z ′ is a pair (Z,OZ ′) consisting of an ordinary scheme Z, the base
scheme of Z ′, and a complex of quasi-coherent sheaves O ·Z ′ on Z, the struc-
ture complex of Z ′. The complex OZ ′ is assumed to be endowed with the
structure of a commutative dg algebra over OZ, and must satisfy

1. O i
Z ′ = 0 for i > 0;

2. O0
Z ′ = OZ.

Maps between dg schemes are obtained by a localization procedure similar
to the one that leads to the construction of derived categories. In a first
stage morphisms of dg schemes are considered as maps of ringed spaces.
For dg schemes Z ′ = (Z,OZ ′) and W ′ = (W,OW ′) a morphism Z ′ → W ′

consists of a map of schemes f : Z → W along with a map of dg algebras
f# : f∗OW ′ → OZ ′ . In the resulting category we have a natural notion of
quasi-isomorphisms of dg schemes – those morphisms (f, f#) for which f#

is a quasi-isomorphism of complexes of sheaves. Formally inverting those
quasi-isomorphisms produces a category DSch, the right derived category
of schemes.

2.2. Because quasi-isomorphisms become isomorphisms in DSch, isomor-
phic dg schemes can be presented over different base schemes. Thus the
base scheme is not an intrinsic part of a dg scheme in DSch. For certain
purposes, however, it is useful to be able to refer to the base scheme of a dg
scheme. Instead of carrying over this additional data, we give an alternative
way of looking at the relationship between a dg scheme Z ′ and its supporting
scheme Z.

The definition of dg schemes implies that the structure complex OZ ′
of a dg scheme Z ′ = (Z,OZ ′) admits a natural morphism of dg algebras
OZ → OZ ′ (where OZ is regarded as a complex concentrated in degree zero).
This shows that a dg scheme Z ′ presented over a base scheme Z comes with
a canonical morphism Z ′ → Z.
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2.3. This observation motivates us to study dg schemes over a fixed scheme
Z instead of arbitrary dg schemes. These are dg schemes Z ′ endowed with
a morphism Z ′ → Z. (We shall mostly be concerned with the situation
when this morphism is affine – this is the case when the dg scheme Z ′ is
presented over Z. But the concept makes sense in general.) As in the theory
of schemes, morphisms of dg schemes over Z are morphisms between dg
schemes which commute with the structure morphisms.

2.4. We now turn to discussing the construction of derived intersections
over various bases. We place ourselves in the context described in the in-
troduction, with X and Y subschemes of S. The structure complex of the
derived intersection W ′ = X ×RS Y is obtained by taking the derived tensor
product OW ′ = OX ⊗L

OS
OY .

The main question we want to address is over what base scheme should
the complex OW ′ be considered. If the schemes were affine, this would be
equivalent to deciding whether to consider this tensor product as an algebra
over OX, OY , OS, etc. Likewise, in the general case there is no canonical
choice of base scheme for the dg scheme W ′, and either one of X, Y, S, or
X× Y can serve for this purpose. For example, it is easy to see W ′ as a dg
scheme over X by resolving OY by a flat commutative dg algebra over S and
pulling back the resolution to X. Similarly, in order to obtain a model over
S resolve both OX and OY over S and tensor them over OS.

It is essential to emphasize that in general it is not possible to present
W ′ as a dg scheme over W, the underived intersection.

2.5. For the purpose of this article we are most interested in a model of W ′

whose base scheme is X× Y. To obtain such a presentation define

OW ′ = OΓi ◦ OΓj = πXY,∗(π
∗
XSOΓi ⊗X×SY×Y π

∗
SYOΓj),

the convolution of the kernels OΓi ∈ D(X × S) and OΓj ∈ D(S × Y). Here
Γi ⊂ X× S, Γj ⊂ S× Y are the graphs of the inclusions i : X ↪→ S, j : Y ↪→ S,
and πXS, πSY and πXY are the projections from X×S×Y to X×S, S×Y, and
X × Y, respectively. (We omit the R’s and L’s in front of derived functors
for simplicity.) The reader can easily supply the required equality of tensor
products of rings which shows that this definition of W ′ is quasi-isomorphic
to the previous ones.

Note that the kernels OΓi and OΓj induce the functors i∗ : D(X) → D(S)
and j∗ : D(S) → D(Y). Since OW ′ is the convolution of these kernels, we
conclude that OW ′ is the kernel of the dg functor j∗i∗ : D(X) → D(Y).

This fact allows us to connect with our earlier discussion in (1.4). Indeed,
in order to guarantee the degeneration of the spectral sequence computing
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Ext∗S(i∗F, j∗G) we need to understand the functor j∗i∗. Since this functor is
controlled by W ′ as presented over X × Y, this explains why we want to
understand formality properties of W ′/X× Y and not over other bases.

2.6. There is another description of OW ′ as an object in D(X × Y) which
is useful in the proof of Theorem 1.8. The original problem of studying the
intersection of X and Y into S can be reformulated to study the intersection
of X× Y with the diagonal in S× S. Let ı̄ and ̄ be the embeddings of S and
X× Y into S× S.

The derived and underived intersections in the new problem are the same
as in the old one. The excess bundle is also the same. However, by replacing
the original problem with the new one we have simplified the initial situation
in two ways. First, the embedding ı̄ : S ↪→ S× S is now split. Second, since
the object ̄∗̄ı∗OS realizes OW ′ as an object of D(X × Y), the problem of
understanding the functor j∗i∗ is replaced by the problem of understanding
the single object ̄∗̄ı∗OS. We have replaced the functor j∗i∗ by the more
complicated functor ̄∗̄ı∗, but we only apply it to a single object OS which is
well behaved.

2.7. We now turn to questions of formality. Given a dg scheme Z ′ over
a scheme Z, with structure morphism f : Z ′ → Z, we shall say that Z ′ is
formal over Z if f∗OZ ′ is formal as an object in D(Z), i.e., if there exists an
isomorphism

f∗OZ ′ ∼=
⊕
j

H j(f∗OZ ′)[−j]

of objects in D(Z).

2.8. The notion of formality of a dg scheme depends on the scheme over
which we are working. Indeed, consider a smooth subvariety X of a smooth
space S, and let X ′ = X ×RS X be the derived self-intersection of X inside
S. Then X ′ is a dg scheme over X in two distinct ways (using the two
projections), and hence it is also a dg scheme over X×X. In [?] the first two
authors introduced two classes,

αHKR ∈ H2(X,N⊗N∨ ⊗N∨)

and

η ∈ H1(X, TX ⊗N∨).

The results of [loc. cit.] and the present paper show that
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– X ′ is formal over X if and only if the HKR class αHKR vanishes;

– X ′ is formal over X× X if and only if the class η, vanishes.

It is known ([?]) that η = 0 implies αHKR = 0, but not vice-versa. Thus X ′

being formal over X × X implies it is formal over X, but the converse can
fail.

3. The proof of the main theorem

In this section we shall prove the main theorem 1.8, which we restate below.
We place ourselves in the context of (1.1), with X and Y smooth subschemes
of S, and with W ′ and W being their derived and underived intersections,
respectively. The maps between these spaces are listed in the diagram below

W ′

π ''

q ′

$$

p ′

##
W

ϕ
gg

p //

q

��

X

i
��

Y
j // S.

The excess intersection bundle E on W is defined as

E =
TS

TX + TY

where all the bundles above are assumed to have been restricted to W.

3.1. Theorem. The following statements are equivalent.

(1) There exists an isomorphism of dg functors D(X) → D(Y)

j∗i∗(− ) ∼= q∗(p
∗(− )⊗ S(E∨[1])).

(2) W ′ is isomorphic to TotW E[−1] as dg schemes over X× Y.

(3) W ′ is formal as a dg scheme over X× Y.

(4) The inclusion W →W ′ splits over X× Y.

(5) The inclusion W →W ′ splits to first order over X× Y.
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(6) The short exact sequence

0→ TX + TY → TS → E→ 0

of vector bundles on W splits.

Proof. We shall prove the following chain of implications and equivalences

(3) ⇔ (2) ⇒ (4) ⇒ (5) ⇔ (6) ⇒ (2) ⇒ (1) ⇒ (6).

The main statements that require proof are the implications (1) ⇒ (6) and
(6) ⇒ (2). Before launching into discussing these we briefly explain the
remaining implication above.

The equivalence of statements (2) and (3) is evident from the definition
of formality and the calculation of the cohomology sheaves of Ow ′ from (1.3).
The implications (2) ⇒ (4) ⇒ (5) are trivial. The equivalence (5) ⇔ (6) is
a dg version of [?, 20.5.12 (iv)]. The implication (2) ⇒ (1) follows from the
considerations in (2.5).

For the remainder of the proof we replace the initial intersection problem
with the problem of intersecting X×Y with the diagonal in S×S, as in (2.6).
We keep denoting the new spaces and embeddings by X, Y, and S, i, j, etc.
Thus the new S is the old S× S, the new X is the diagonal in the old S× S,
and the new Y is the old X× Y.

We reformulate (1), (2), and (6) of the theorem in the new setting.
Statements (1) and (2) become the statements that there exist isomorphisms

j∗i∗OX ∼= q∗S(E∨[1])

as objects of D(X× Y) and as commutative dg algebra objects in D(X× Y),
respectively. The short exact sequence of (6) becomes the sequence

0→ NW/Y → NX/S|W → E→ 0.

Assume that (1) holds, in other words that there is an isomorphism
j∗i∗OX ∼= q∗S(E∨[1]). We compute H −1(q∗j∗i∗OX) in two different ways.
On one hand we have

H −1(q∗j∗i∗OX) = H −1(q∗q∗S(E∨[1])) = E∨ ⊕N∨

W/Y

by a calculation analogous to the one in (1.3) and the assumption of (1).
On the other hand a similar calculation for the map i shows that

H −1(q∗j∗i∗OX) = H −1(p∗i∗i∗OX) = p
∗N∨

X/S.
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We conclude that
N∨

X/S|W
∼= E∨ ⊕N∨

W/Y ,

which using Lemma 3.2 below shows that the sequence

0→ NW/Y → NX/S|W → E→ 0

is split, thus proving (6). We have proved (1) ⇒ (6).
We turn our attention to the implication (6) ⇒ (2). Assuming that (6)

holds, fix an isomorphism NX/S|W ∼= NW/Y ⊕ E. Consider the map

q∗j∗i∗OX ∼= p∗i∗i∗OX ∼= S(N∨

X/S|W [1]) ∼= S(E∨[1])⊗ S(N∨

W/Y [1]) → S(E∨[1]).

Here the first isomorphism comes from the equality q∗j∗ ∼= p∗i∗, the sec-
ond isomorphism is the main result of [?], the third one arises from the
isomorphism

NX/S|W ∼= NW/Y ⊕ E,
and the last map uses the projection

S(N∨

W/Y [1]) → OW .

Using the adjunction q∗ a q∗ the above map on W gives rise to a map on Y

j∗i∗OX → q∗S(E∨[1]).

Since all the maps involved are dg algebra maps, all that is left to prove (2)
is to check that this last map is an isomorphism in D(Y). This is a local
statement, which can be checked (locally) using Koszul resolutions. This
concludes the proof.

3.2. Lemma. Let k be a field, and consider a short exact sequence

0→M ′ →M→M" → 0

in a fixed k-linear abelian category. Assume that Hom(M ′,M ′), Hom(M,M ′),
and Hom(M",M ′) are finite dimensional over k. If M is abstractly isomor-
phic to M ′ ⊕M", then the short exact sequence splits.

Proof. Consider the long exact sequence

0→ Hom(M",M ′) → Hom(M,M ′) → Hom(M ′,M ′) → Ext1(M",M ′).

By the assumption thatM is isomorphic toM ′⊕M" we know that Hom(M,M ′)
is abstractly isomorphic to Hom(M ′,M ′)⊕Hom(M",M ′). Counting dimen-
sions shows that the map

Hom(M,M ′) → Hom(M ′,M ′)
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is surjective, hence the map

Hom(M ′,M ′) → Ext1(M",M ′)

is zero. Therefore the class of the given extension, which is the image of the
identity in Hom(M ′,M ′) under the above map, is zero.

4. Applications to orbifolds

In this section we discuss how our main result Theorem 1.8 can be used to
understand the structure of derived fixed loci and of the loop space of an
orbifold.

4.1. We review the setup in (1.10). Let Z be a smooth variety over a field
k, and let ϕ be an automorphism of Z of finite order n. Let W be the fixed
locus of ϕ. We shall assume that the characteristic of k is either zero or
greater than max(n, codimZW).

Note that the ordinary fixed locus W can be understood as an intersec-
tion,

W = ∆×Z×Z ∆ϕ,

where ∆ and ∆ϕ denote the diagonal in Z × Z and the graph of ϕ, respec-
tively. As such the expected dimension of W is zero. Whenever n > 0 it
is important to understand the failure of this intersection problem to be
transversal, by studying the derived intersection space

W ′ = ∆× Z× ZR∆ϕ.

We shall sometimes call this space the derived fixed locus of ϕ.

4.2. Theorem 1.8 shows that in order to understand the structure of W ′ we
need to study the short exact sequence

0→ T∆ + T∆ϕ → TZ×Z → E→ 0

where E is the excess bundle for this intersection problem. We shall prove
that this sequence is always split, under the assumptions we made for the
characteristic of k. We begin with a lemma.
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4.3. Lemma. In the setup of Theorem 1.8, assume that the map X→ S is
split to first order, and that the short exact sequence

0→ NW/Y → NX/S|W → E→ 0

splits. Then the six equivalent statements of Theorem 1.8 are all true.

Proof. It is easy to see that the two conditions of the lemma imply that the
short exact sequence of (6) of Theorem 1.8 splits. Equivalently, these two
conditions are what was used in the proof of Theorem 1.8 after changing the
problem to an intersection of the diagonal with X× Y.

4.4. Theorem. Assume we are in the setup of (4.1). Denote by (TZ)ϕ the
bundle on W of coinvariants of the action of ϕ on TZ,

(TZ)ϕ =
TZ

〈v−ϕ(v)〉
.

Then the derived fixed locus W ′ is isomorphic, as a dg scheme over Z× Z,
to the total space over W of the dg vector bundle (TZ)ϕ[−1],

W ′ ∼= TotW ((TZ)ϕ[−1]) .
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